CONSEJO DIRECTIVO DEL IMARPE 2008

Presidente
Contralmirante (r) HÉCTOR SOLDI SOLDI

Vicepresidente
Contralmirante MAURO CACHO DE ARMERO

Directores
Doctor LUIS ICOCHEA SALAS
Ingeniero JOSÉ A. SARMIENTO MADUEÑO
Ingeniero JORGE VÉRTIZ CALDERÓN

Director Ejecutivo
Economista GODOFREDO CAÑOTE SANTAMARINA
CARGOS DIRECTIVOS IMARPE 2008

Director Ejecutivo
Economista GODOFREDO CANOTE SANTAMARINA

Director Científico
Biólogo CARLOS M. BENITES RODRÍGUEZ

Directores de Investigación
Recursos Pelágicos Neríticos y Oceánicos
Biólogo MIGUEL NIQUEN CARRANZA
Acuicultura, Gestión Costera Y Aguas Continentales
Biólogo VÍCTOR YÉPEZ PINILLOS
Recursos Demersales y Litorales
Bióloga FLOR FERNÁNDEZ RAMÍREZ
Pesca y Desarrollo Tecnológico
Ingeniero Pesquero CARLOS M. SALAZAR CÉSPEDES
Oceanografía
Bióloga CARMEN SOLEDAD GUZMÁN CÁRDENAS

Jefe de la Unidad de Investigación y Desarrollo
Bióloga EMIRA ANTONIETTI VILLALOBOS

Director de la Oficina Planificación, Presupuesto y Evaluación de Gestión
Señor JUAN JOSÉ CASTILLO ASIÁN

Director de la Oficina de Administración
Contador Público Colegiado EDMUNDO MONTEVERDE VALVERDE

Director de la Oficina de Asesoría Jurídica
Abogada GISELLA VIVAR RAMÍREZ

Director de la Oficina de Auditoría Interna
Contador Público Colegiado WALTER QUIROZ SUSANÍBAR

Jefes de las Sedes Descentralizadas del IMARPE

<table>
<thead>
<tr>
<th>Tumbes</th>
<th>Biólogo Dr. JORGE LLANOS URBINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paita, Piura</td>
<td>Biólogo ISAÍAS GONZÁLEZ CHÁVEZ</td>
</tr>
<tr>
<td>Santa Rosa, Lambayeque</td>
<td>Biólogo Dr. WILMER CARBAJAL VILLALTA</td>
</tr>
<tr>
<td>Huanchaco, La Libertad</td>
<td>Biólogo Dr. ÁLVARO TRESIERRA AGUILAR</td>
</tr>
<tr>
<td>Chimbote, Áncash</td>
<td>Biólogo JUAN RUBIO RODRÍGUEZ</td>
</tr>
<tr>
<td>Huacho, Lima</td>
<td>Biólogo WALTER ELLIOTT RODRÍGUEZ</td>
</tr>
<tr>
<td>Pisco, Ica</td>
<td>Biólogo JORGE ZEBALLOS FLOR</td>
</tr>
<tr>
<td>Ilo, Moquegua</td>
<td>Biólogo CARLOS RAÚL CASTILLO ROJAS</td>
</tr>
<tr>
<td>Puno</td>
<td>Biólogo HUGO TREVINO BERNAL</td>
</tr>
</tbody>
</table>

Enero – Diciembre 2008

Callao, Perú

Bahías El Ferrol y Coishco, Chimbote, Perú: Evaluación ambiental en abril y julio 2002

El Ferrol and Coishco bays, Chimbote, Perú: April and July 2002 environmental assessment
Guadalupe Sánchez Rivas, Edgardo Enríquez Travezaño, Víctor García Nolazco .. 7

Bahía del Callao, Perú. Evaluación ambiental en marzo 2002

Callao Bay, Perú. Environmental assessment in March 2002
Guadalupe Sánchez Rivas, Rita Orozco, Manuel Guzmán 27

Contaminantes orgánicos persistentes (COP) en la zona marino costera de Cañete, Perú. Mayo 2002

Persistent organic pollutants (POP) found in the marine coastal zone of Cañete, Perú. May 2002
Rita Cabello, Guadalupe Sánchez Rivas 43

Calidad ambiental en el área marino costera de Huarmey, Perú.

Marzo 2002

Environmental quality in the coastal marine area off Huarmey, Peru. March 2002
María Elena Jacinto, Rita Cabello, Rita Orozco 49

Bahía de Huarmey, Áncash, Perú. Evaluación ambiental en abril 2003

Huarmey Bay, Ancash, Perú. April 2003 Environmental assessment
María Elena Jacinto, Noel Domínguez, Rita Orozco 59

Hidrocarburos de petróleo en áreas Marino costeras del Perú. 2004

Petroleum hydrocarbons in marine coastal areas of Peru 2004
Rita J. Cabello Torres, María E. Jacinto Tayco 65

Instrucciones a los autores ... 75
BAHÍAS EL FERROL Y COISHCO, CHIMBOTE, PERÚ: EVALUACIÓN AMBIENTAL EN ABRIL Y JULIO 2002

EL FERROL AND COISHCO BAYS, CHIMBOTE, PERU: APRIL AND JULY 2002 ENVIRONMENTAL ASSESSMENT

Guadalupe Sánchez Rivas, Edgardo Enríquez Travezaño, Víctor García Nolazco
Unidad de Monitoreo y Gestión Marino Costera. DIAGCAC. IMARPE. gsanchez@imarpe.gob.pe

RESUMEN

ABSTRACT
Sánchez G, Enríquez E, García V. 2008. El Ferrol and Coishco bays Chimbote, Peru: April and July 2002 environmental assessment. Inf Inst Mar Perú. 35 (1): 7-26.- This work was into the Network of Environmental Monitoring, Institutional Operational Plan 2002 IMARPE. In the first period (April 26-30) 16 sea sample points, and in the second one (July 24-27), 19 points were fixed; in both cases, 12 beach sample stations, one in Lacramarca river and other in Santa river, were set. Indicators of the marine environment and of the pollution from land were evaluated. In El Ferrol Bay the sewage are discharged through four pumping chambers in the north, and in the south, the Lacramarca river flows into the sea. The Coishco bay receives agricultural and domestic runoff, forming water mixes with the Santa river, with a typical salinity. The temperature corresponded to the area and season studied. Dissolved oxygen levels were low in July, with anoxia off fish factories in El Ferrol Bay, and hypoxia in some areas into Coishco Bay. Silicates and phosphates were high, mainly due to the influence of Santa river to Coishco. The total suspended solids (TSS) were within the permissible limits of the Peruvian General Waters Law. The Hydrogen sulfide concentrations were low. Oils and fats reached significant levels in some points of El Ferrol Bay southeast. In Coishco bay, the values of thermotolerant coliforms were high mainly in the central area; in El Ferrol bay, in July, those values exceeded the LGA for IV, V and VI classes. The Cd, Pb and Zn, trace metals had the lowest average concentration in the last two years. Hydrocarbon concentrations in sediments were generally low. The water quality of Santa river, at the end of the lower basin showed high concentrations of silicate and nitrate inputs; besides mainly thermo tolerant coliform contamination, mainly in April, and BOD within the permissible levels. Keywords: Coishco Bay, El Ferrol Bay, Chimbote, Peruvian sea, water quality, pollution

INTRODUCCIÓN
La Ecorregión del Mar Frío o de la Corriente Peruana (Brack 1986) incluye el Gran Ecosistema de la Corriente de Humboldt, en el Pacífico oriental sudamericano, desde aproximadamente los 5°S hasta la región central de Chile, y se considera una de las áreas de mayor productividad marina en nuestro planeta. En el Perú, la zona marina frente a Chimbote se estima como de especial importancia (Guillén et al. 1977), no solo ecológica sino también socio-económica, que ha permitido gran desarrollo de la pesca y de la industria pesquera, con unas 21 fábricas operativas instaladas en la bahía El Ferrol, además de otras plantas industriales, que ha ocasionado el crecimiento desordenado de la ciudad, con inadecuada gestión de los residuos líquidos y sólidos, causando
un grave y permanente deterioro del ecosistema marino costero en esta bahía.

El IMARPE, desde 1992, realiza investigaciones sobre la calidad del ambiente marino. En la etapa inicial, los monitoreos locales no fueron sistemáticos. En el año 2002 se realizaron dos monitoreos, en las bahías El Ferrol y Coishco, uno en abril y otro en julio, en coordinación con la sede IMARPE Chimbote. También se discute algunos aspectos del monitoreo efectuado en junio por requerimiento del Ministerio de Pesquería y en apoyo de la Comisión Técnica de Alto Nivel creada para la Recuperación de la bahía El Ferrol.

MATERIAL Y MÉTODOS

Muestreo de campo.- En el 2002, un monitoreo se llevó a cabo del 26 al 30 de abril y otro, del 24 al 27 de julio, en las bahías Coishco y El Ferrol (9°00’9.3” a 9°09’29.9”S). Además, se efectuó un muestreo de las aguas de los ríos Santa y Lamacmarca, en estaciones ubicadas cerca a la desembocadura. En abril se contó con la colaboración de la Capitanía de Puerto de Chimbote. Así se obtuvo la participación de la lancha patrullera río Lurín en el monitoreo de la bahía El Ferrol, y la coordinación con una empresa pesquera para utilizar la panga Deborah en la bahía Coishco. En julio trabajó la LIC IMARPE V y se muestreó en 19 estaciones, tres más que en abril 2002 (Figura 1). Por playas se mantuvo las estaciones ya seleccionadas.

Muestreo por mar.- Se empleó un posicionador GPS Garmin. Se registró la temperatura en superficie y fondo, en las estaciones con profundidades >12 m se efectuaron en superficie, medio y fondo. Se tomaron muestras de agua superficial y subsuperficial. Se efectuaron análisis de salinidad, oxígeno, pH, nutrientes, sólidos suspendidos, aceites y grasas, sulfuros de hidrógeno, DBO, y coliformes; y en estaciones pre establecidas se tomaron muestras para análisis de hidrocarburos de petróleo y trazas de metales.

La recolección de sedimentos se efectuó con una draga tipo Van Veen de 0,05 m² de área de mordida, a profundidades entre 7 a 19 m. Se colectó la muestra de los primeros 3 cm del substrato, para efectuar análisis de trazas de metales e hidrocarburos de petróleo.

Muestreo por litoral costero y ribera de ríos.- Se seleccionaron 9 estaciones de línea de litoral costero, 3 en Coishco y 6 en El Ferrol y se tomaron muestras de agua de mar. En julio, en El Ferrol, se colectaron peces y mariscos, para los análisis de trazas de metales.

Análisis de laboratorio.- Los análisis físico-químicos se efectuaron siguiendo la metodología aplicada por los laboratorios analíticos del IMARPE.

RESULTADOS

FUENTES DE CONTAMINACIÓN MARINA DE ORIGEN TERRESTRE

Agua residuales de la industria pesquera.- Constituyen las principales fuentes de ingreso de materia orgánica (MO) en la bahía El Ferrol. El problema se deriva del manejo de los residuos líquidos (Figura 2). El vertimiento de gran volúmenes de MO ocurre en cortos periodos de tiempo y afecta principalmente el área de mar frente a “27 de octubre” (donde se concentran el 85% de las fábricas) y hacia el norte hasta “Mirmar”. Actualmente la materia orgánica proviene de una sola etapa del proceso de producción de harina y aceite de pescado; sin embargo, muchas plantas pesqueras proceden a instalar las llamadas “bombas ecológicas” que emplean en el bombeo la relación 1:1 de agua vs. pescado. Esta agua después de ser empleada regresa a la bahía cargada de escamas, sangre, mucus y restos de pescado.

En la bahía de Coishco, existen seis fábricas pesqueras con una capacidad de 487 t/h (MIRE 2001), que igualmente descargan hacia el mar el agua de bombeo y otros residuos líquidos provenientes del proceso de reducción de harina.

Agua residuales de la industria siderúrgica.- Las agua residuales de SIDERPERÚ también son factores directos de contaminación en la bahía El Ferrol. Contienen óxidos, aceites, grasas, detergentes, aguas muy ácidas y metales pesados (Cu, Pb, Cd, Zn). CUADROS Y GONZALES (en CONAM 2000) informaron que dicho desagüe aporta 700 m³/h equivalente a 194 L·seg⁻¹.

Según informe de SIDERPERÚ (CONAM 2000) se estima que el volumen promedio de descarga del
colector principal es de aproximadamente 20,000 m³·año⁻¹, y las aguas que llegan a las playas de Chimbote contienen excedentes del agua depurada de los circuitos Spray Pond, del tratamiento de los lodos del clasificador del alto horno y de las aguas del escoriado que contienen sales magnésicas y cálcicas (Figura 3).

Aguas residuales municipales.
El sistema de alcantarillado de Chimbote es administrado por SEDAR Chimbote, que controla las cinco cámaras de bombeo de las aguas servidas, cuatro ubicadas en la zona norte “San Pedro”, “Palacios”, “Ica” y “Trapecio” y una en la zona sur “Villa María”, las cuatro primeras se encuentran en mal estado y la de Villa María bombea aguas servidas a la laguna de oxidación del mismo nombre. Existe otra laguna de estabilización al oeste de Villa María denominada “Las Gaviotas”, donde las aguas reciben tratamiento primario y secundario y el efluente se infiltra al suelo sin llegar al mar, formando pantanos. Según SEDAR Chimbote, al año 2000 había 13 emisores de aguas domésticas descargando en la bahía El Ferrol (Figura 4).

Al mar de Coishco llegan escorrentías agrícolas y en mezcla con aguas domésticas, en varios puntos de la playa de arena (Figura 5), por lo cual, la zona intermareal y submareal superior, presentan restos sólidos de origen agrícola. En verano, es muy evidente la influencia del río Santa, que se puede apreciar por la coloración marrón en la parte interna de la bahía.
Otras actividades que originan residuos.- En la parte baja de la cuenca del río Santa se desarrolla ganadería y agricultura, principalmente algodonero y maíz. Estas actividades dan lugar a desechos sólidos y líquidos; estos últimos son descargados a través de drenes que van indirectamente al mar, a través del río, o en forma directa y semicontinua.

La cuenca del río Santa posee yacimientos metálicos y no metálicos, constituidos principalmente por las formaciones de areniscas, pizarras, cuarcitas y calizas intuídas por el batolito, donde existen yacimientos de plomo, plata, zinc; también en el lecho del río Chuquicara existen lavaderos de oro. A fines de 1998 entró en operación la mina Pierina de la Compañía Barrick Misquichilca, que viene procesando oro y plata a tajo abierto, que ha efectuado la presentación de Estudios de Impacto Ambiental y Planes de Manejo Ambiental, con la finalidad de minimizar los impactos de esta actividad.

CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DEL AGUA DE MAR EN LAS BAHÍAS DE COISHCO Y EL FERROL

En el 2002 se trabajó en dos oportunidades: a inicios de otoño (26-30 abril) y en el invierno (24-31 julio 2002) y sus resultados se anotan por separado. En la Figura 1 se representan las estaciones de observación; en Coishco fueron siete en mar y tres en playa (A, B, C); en El Ferrol, 19 estaciones en mar y 6 en playa (D, E, F, G, H, I). Se estableció una estación en la desembocadura del río Santa (RS1) y otra en el río Lacramarca (RL1). En la Tabla 1 se reúnen las características físicas de las bahías, en superficie y subsuperficie o cerca al fondo. En la Tabla 2 se describen las estaciones de playa. En la Tabla 3 se anotan las características químicas, en superficie y subsuperficie o cerca al fondo.

Temperatura (°C).- En abril, la bahía de Coishco tuvo temperaturas más bajas y más homogéneas (18 – 18,5 °C) que en El Ferrol, donde la mayor temperatura fue superficial (21 °C), cerca de la línea costera, y en el centro de la bahía (20,5 °C). En
julio las temperaturas fueron menores y con poca diferencia en ambas profundidades (Figuras 6 y 7).

Salinidad (ups).- A nivel superficial, en abril y julio, se presentaron aguas de mezcla de Aguas Costeras Frías (ACF) con aguas de los ríos Santa para Coishco y Lacramarca en El Ferrol, así como de las acequias y aguas residuales domésticas en ambas bahías. En abril, el 94% correspondió a aguas mixohalinas (35,048 a 33,901 ups); en julio sólo el 47% tuvo salinidad propia de agua de mezcla y en la zona muy costera. Hacia afuera, las concentraciones de sales se normalizaron alcanzando 34,975 ups (abril) y 35,066 ups (julio) en la misma Estación 16, por el ingreso de ACF en el extremo sur de la bahía El Ferrol (Figuras 8 y 9).

Sobre el fondo, en abril y julio, la salinidad se presentó en concentraciones propias de las ACF.

Oxígeno disuelto (OD).- A nivel superficial, en abril, los valores estuvieron dentro de los límites permisibles, en Coishco (5,02 a 3,65 mL/L) y en El Ferrol (3,21 a 1,06 mL/L); en julio hubo anoxia frente a la zona industrial pesquera de El Ferrol e hipoxia en Coishco (Figuras 10 y 11).

A nivel del fondo, se presentaron ambientes hipóxicos especialmente en El Ferrol. Esta tendencia fue más evidente en julio que en abril, por la actividad pesquera industrial todavía activa en el mes de julio.

Nutrientes

Fosfatos.- Los datos se presentan en la Tabla 3.-

En abril: Coishco, 18,64 a 2,44 ug-at/L, promedio 6,61; en El Ferrol, 22,66 a 1,67 ug-at/L, promedio 5,49 ug-at/L. En julio: Coishco: 8,17 a 3,30 ug-at/L promedio 5,51; El Ferrol 18,12 a 2,06. Las Figuras 12 y 13 muestran que las mayores concentraciones se registrarán en la costa norte y centro de la bahía El Ferrol.

A nivel subsuperficial.- En abril: Coishco, los fosfatos siguieron la misma tendencia que a nivel superficial y con gran influencia del río Santa, con excepción de la Estación 5 (17,88 ug-at/L) probablemente debido a la influencia residual del río Santa.
mente por aguas de surgencia; en El Ferrol, los fosfatos estuvieron altos fuera de la línea costera, provenientes de aguas de afloramiento costero (Figuras 12 y 13). En julio: en ambas bahías, los valores estuvieron dentro de lo esperado para la época del año.

Silicatos.- Los datos se presentan en la Tabla 3.- A nivel superficial: En abril: en Coishco, 76,64 a 16,98 ug-at/L, promedio 34,63 ug-at/L; El Ferrol presentó un rango de 13,98 a 2,27 ug-at/L, promedio 7,33 ug-at/L, la mayor concentración en la Estación 9, en la bocana del extremo norte de la bahía. En julio los silicatos presentaron valores a nivel superficial muy similares tanto en Coishco como El Ferrol, con promedio de 13,98 y 9,32 ug-at/L respectivamente (Figuras 14 y 15).

A nivel subsuperficial: En abril, en Coishco y El Ferrol, tuvieron la misma tendencia superficial, apreciándose aguas de surgencia y de mezcla (Figura 14b). En julio, los silicatos tuvieron valores más bajos, con menos influencia de las aguas continentales, especialmente en la bahía El Ferrol (Figura 15b).

Nitratos.- Los datos se presentan en la Tabla 3.- A nivel superficial: En abril: en Coishco (Figura 16a), los nitratos (19,93 a 13,01 ug-at/L, promedio 16,17) provenientes de agua de surgencia por el extremo sur e influenciados por las aguas del río Santa, crearon un remolino en la parte central de la pequeña bahía. En El Ferrol, los nitratos (19,93 a 0,95 ug-at/L, un promedio 5,22 ug-at/L) indicaron un ingreso de aguas de afloramiento por el extremo sur de la bahía, la bocana entre la península y la isla Ferrol Sur. En julio (Figura 17a), los nitratos en Coishco (promedio 13,98 ug-at/L) y en El Ferrol (9,32 ug-at/L) tuvieron valores mayores afuera de las bahías.

A nivel subsuperficial la tendencia fue semejante a nivel de superficie, con isolíneas de 5 ug-at/L muy cerca de la línea costera e isolíneas de 15 hacia afuera (Figuras 16b y 17b). En abril, en Coishco (16,59 a 7,78 ug-at/L, promedio 11,57) el valor más alto se obtuvo en la estación más al norte, influenciada por material orgánico de origen terrígeno. En
la bahía El Ferrol (17,25 a 1,52, promedio 12,94 ug-at/L) el valor más alto ocurrió en la Estación 12, en la boca principal de la bahía y probablemente influenciada por aguas de afloramiento costero. En JULIO: Coishco (15,97 a 12,47 ug-at/L, promedio 10,96) y para El Ferrol (18,92 a 3,00 ug-at/L, promedio 10,96).

Nitritos.- Los datos se presentan en la Tabla 3.- A nivel superficial: En ABRIL: en Coishco los nitritos reflejaron la interferencia de material terrígeno aportado por el río Santa (Figura 18a) (1,67 a 0,48 ug-at/L, promedio 1,15); en El Ferrol de 1,13 a 0,63 ug-at/L, promedio de 0,84 ug-at/L. EN JULIO los valores fueron más altos (Figura 19a), tanto en Coishco (2,30 a 0,96 ug-at/L, promedio de 2,07 ug-at/L), como en El Ferrol, (2,30 a 0,56 ug-at/L, promedio de 1,14 ug-at/L).

A nivel subsuperficial, los nitritos en ambas bahías presentaron concentraciones muy similares en los meses de abril y julio (Figuras 18b y 19b); en Coishco en ambos meses fueron de 1,73 a 0,98 ug-at/L. En El Ferrol, en abril llegaron a 2,32 a 0,86 ug-at/L, promedio 1,40 ug-at/L; en julio, de 1,80 a 0,59 ug-at/L, promedio 0,93 ug-at/L.

Sólidos suspendidos totales (SST).- Los datos se anotan en la Tabla 4. A nivel superficial, para Coishco en abril y julio se registró de 29,83 a 22,40 mg/L, promedio 27,08. En El Ferrol los valores fueron 34,18 a 22,25 mg/L, promedio 25,32. En las Figuras 20a y 21a, se aprecia la distribución de las isólneas de SST que van de mayores concentraciones localizadas en las zonas costeras, hacia menores concentraciones fuera de las bahías.

A nivel subsuperficial, en ABRIL: para Coishco, en las Figuras 20b y 21b se muestran las isólneas con las concentraciones mayores, con isólneas >40 mg/L; en El Ferrol las isólneas presentan una distribución concéntrica al norte y afuera de la bahía, con mayor valor en las estaciones costeras. EN JULIO, siguió la misma tendencia pero las isólneas con valores más altos se presentaron al sur y fuera de la línea costera.
Sulfuro de Hidrógeno.- Los datos se tomaron principalmente a nivel subsuperficial (Tabla 4). En abril (Figura 22a) el rango mayor (0,39 a 2,22 ug-at H₂S-S/L) fue en El Ferrol; el último valor se encontró frente a la zona de descarga de las aguas residuales domésticas e industriales de Chimbote. Las isolíneas se presentaron en forma paralela, hacia el noroeste de la bahía El Ferrol, y son menores conforme se alejan de la costa. En julio (Figura 23a) se registró una distribución más homogénea y las concentraciones estuvieron por debajo de 1,0 (0,43 a 0,61 ug-at H₂S-S/L).

Aceites y grasas.- La evaluación fue a nivel superficial (Tabla 4, y Figura 23b). Bahía El Ferrol: en abril (0,65 a 20,78 mg/L) (Figura 22b), el valor más alto correspondió afuera y al suroeste de la bahía, probablemente estas sustancias fueron arrastradas por los vientos y corrientes marinas; la carencia de información del flujo y su velocidad no permitieron determinar si había una orientación para dispersarse desde la línea costera. En julio (0,31 a 4,19 mg/L) (Figura 23b), la mayor concentración se presentó al sur de la bahía; tampoco se tuvo información de las corrientes marinas para un mejor entendimiento de su posible dispersión.

En Coishco, en abril (0,5 a 1,70 mg/L); en julio (0,80 a 5,66 mg/L); para ambos, el promedio fue 1,08 y 3,56 mg/L; y los máximos valores se presentaron al noroeste de la bahía.

Demanda bioquímica de oxígeno (DBO₅).- La evaluación se realizó en superficie (Tabla 4, Figura 24). En abril, estos valores fueron bajos y no sobrepasaron los límites permitidos fijados por la Ley General de Aguas (10 mg/L). En julio fueron ligeramente más altos en ambas bahías, y en dos estaciones estuvieron por encima de lo permisible: una frente a las plantas industriales pesqueras (20,15 mg/L); y la otra, frente a la ciudad de Chimbote (12,20 mg/L). En la bahía El Ferrol, la DBO₅ mostró concentraciones más altas en la zona central, que disminuyeron hacia afuera.

Indicadores de contaminación microbiológica.- La evaluación se
realizó en superficie. Los Coliformes Totales, en abril (Tabla 4, Figura 25 a); en El Ferrol alcanzaron el rango <30 a 4,3x10^2 NMP/100 mL. En Coishco, los valores fueron más altos: 7,5x10^2 a 2,1x10^3 NMP/100 mL. En julio, se pudo apreciar en El Ferrol la mayor concentración cercana a la zona costera.

Los Coliformes Termotolerantes, en abril (Tabla 4, Figura 26a), en El Ferrol, fluctuaron entre <30 a 2,3x10^2 NMP/100 mL; en Coishco, entre 4,3x10^2 y 7,5x10^2 NMP/100 mL; en julio (Figura 26b), las mayores concentraciones ocurrieron en la parte central de la línea costera de Coishco, que sobrepasaron el límite permisible establecido en LGA para la clase V: Aguas de Preservación de Fauna Acuática. Los valores variaron de <30 a 4,6x10^4 NMP/100 mL (Tabla 4). Estos valores sobrepasaron los límites permisibles (LP) para las clases IV, V y VI de la Ley General de Aguas.

Zona de playas. Indicadores de calidad del agua de mar

Nutrientes.- Los datos obtenidos a nivel de playas se muestran en la Tabla 3.

Los fosfatos, en abril, en Coishco presentaron un promedio de 3,38 ug-at/L; en julio, alcanzó 5,59 ug-at/L. En El Ferrol, en abril el promedio fue 7,64 ug-at/L; y 4,53 ug-at/L en julio.

Los silicatos a nivel de playas fueron muy altos en Coishco, por influencia del río Santa, además de los efluentes industriales y domésticos, en abril (58,90 ug-at/L) y en julio (41,98 ug-at/L). La bahía El Ferrol, recibe la influencia del río Lacremarca, en abril (29,55 ug-at/L), y en julio (31,90 ug-at/L).

Los nitratos presentaron en Coishco valores altos, tanto en abril (23,4 ug-at/L) como en julio (28,51 ug-at/L). En El Ferrol se obtuvo promedios más bajos tanto en abril (9,82 ug-at/L) como en julio (16,34 ug-at/L); en la zona de influencia del río Lacremarca presentó el valor más alto en abril (16,19 ug-at/L); y en julio alcanzó 22,62 ug-at/L en la del muelle Gilideimester.

En los nitritos las concentraciones obtenidas en abril, en Coishco y El Ferrol, dieron promedios muy similares 1,93 y 1,95 ug-at/L; igualmente se presentó en julio, Coishco (1,80 ug-at/L) y El Ferrol (2,43 ug-at/L), por influencia de la actividad industrial pesquera.

La DOB_5 por playas, en abril los valores fueron mayores en bahía El Ferrol (2,6 a 28,50 mg/L), con el máximo valor en la estación F (frente a la zona industrial pesquera) y en la Estación G (zona de influencia del río Lacremarca) donde también se obtuvo un valor ligeramente por encima de lo permisible con 14,00 mg/L.

En julio, los valores de DBO_5 por playas fueron bajos, variaron en El Ferrol (1,76 a 6,60 mg/L) y en Coishco fueron menores a 5,35 mg/L. Todos estos valores estuvieron debajo de los LMP fijados por la LGA.

Coliformes totales y termotolerantes.- En ambas bahías, sobrepasaron los límites permisibles fijados por la LGA para la clase IV, V y VI.

En la zona de Coishco fue muy alta tanto los coliformes totales (4,3x10^2 a 2,3x10^4 NMP/100 mL), como los coliformes termotolerantes (2,3x10^2 a 2,3x10^4 MP/100 mL). Los mayores valores se registraron en las estaciones B, cerca de las descargas de las acequias agrícolas y de aguas residuales domésticas (Tabla 3).

En la bahía El Ferrol, fueron también muy altos tanto los coliformes totales (4,0x10 a 2,3x10^4 NMP/100 mL), como los termotolerantes (<30 a 2,3x10^4 NMP/100 mL). Los mayores valores de termotolerantes se detectaron en la estación E donde se encuentran descargas de aguas residuales municipales.

Trazas de metales en sedimentos

En abril, en diferentes sustratos marinos y en áreas con estaciones seleccionadas, se evaluaron niveles de trazas de cadmio, plomo, cinc y cobre (Tabla 5, Figura 27).

Cadmio total: la mayor contaminación (5,22 mg/g) se detectó en la estación 10, frente a las plantas pesqueras, a una profundidad de 8,5 m. El valor más bajo (1,58 mg/g), en la estación 8 al suroeste de las plantas pesqueras, El promedio fue 2,67 mg/g. En la presente evaluación la distribución espacial de cadmio se concentró en la zona costera frente a las plantas pesqueras, con un gradiente de concentración más baja hacia el oeste.

Plomo total: el mayor valor (1,18 mg/g) se detectó en la estación 15, al suroeste de las plantas pesqueras, a una profundidad de 9,5 m. El menor valor (0,09 mg/g), en la estación 14, a 2,5 mn de la línea de la costa. El promedio fue 0,49 mg/g. En la presente evaluación la distribución espacial de plomo se concentró al suroeste de las plantas pesqueras.

Cobre total: la mayor concentración (23,44 mg/g) se detectó en la estación 10, a 1,0 mn de las plantas pesqueras, a 8,5 m de profundidad. El menor valor (17,61 mg/g), en la estación 8, al suroeste
del muelle Minerales; el valor medio fue 21,01 mg/g. En la presente evaluación, la distribución espacial de cobre fue relativamente homogénea en toda la bahía.

Cinc total: sus niveles variaron entre 10,76 a 13,93 mg/g; el mayor se detectó en la estación 15 a una profundidad de 9,5 m (promedio del área 12,14 mg/g); esta concentración es inferior al rango establecido de 30,2 a 135,0 mg/g para el golfo de Nicoya. El menor valor (10,76 mg/g) se registró en la estación 8, al sureste del muelle Minerales.

La distribución espacial de cinc mostró el gradiente de disminución en sentido noroeste con respecto a las plantas pesqueras. La concentración promedio anual de cinc registrada en el 2000 fue de 217,37 mg/g; en el 2002 se ha registrado una disminución a 13,07 mg/g.

Niveles de hidrocarburos de petróleo en sedimentos: En la Tabla 5 y la Figura 28 se dan los valores de las concentraciones de hidrocarburos disueltos en agua (HDT) y los de hidrocarburos aromáticos totales en sedimentos (HAT), en estaciones seleccionadas considerando las actividades que se desarrollan en las mismas áreas o en áreas contiguas a las estaciones.

Los valores de HDT fueron bastante bajos en las cuatro estaciones (de 0,19 a 0,29 ug/L y promedio 0,38 ug/L); sin embargo, en el sustrato marino las concentraciones variaron de 0,40 a 15,44 ug/g con un promedio de 7,14 ug/g, el valor más alto se encontró frente a la zona industrial pesquera, con intenso tráfico de las embarcaciones pesqueras (bolicheras).

Trazas de metales en organismos: En julio del 2002 se obtuvieron muestras de diferentes grupos taxonómicos y niveles tróficos, siendo esto último un aspecto importantísimo para que el organismo tenga mayor o menor posibilidades de ingesta de metales trazas.

En la Tabla 6 y la Figura 29, se presentan los resultados de los análisis realizados en tres grupos taxonómicos: Moluscos (el caracol *Stramonita (Thais) chocolata* colectado en dos lugares de la bahía El Ferrol y la almeja *Gari solida*, de Coishco), Crustáceos (el cangrejo *Platycarthus orbignyi*, de dos puntos diferentes), y peces (majarrilla, *Stellaris minor*; cabinza, *Isacia conceptionis*; pejerrey *Odontesthes regia regia*).

Características hidrográficas e hidrológicas del río Santa

La cuenca del río Santa se encuentra ubicada en la parte norte-central del Perú y conforma uno de los principales valles longitudinales en la vertiente occidental del Perú, con un área de 14.954 km², comprende sectores de la costa y sierra de los departamentos de La Libertad y Áncash. De oeste a este, se pueden diferenciar tres macrounidades geomorfológicas:

- **Pampas costaneras**
- **Flanco occidental de los Andes**
- **Altiplano**

En ellas existen diversos climas, como el clima húmedo y con precipitaciones casi nulas, entre las playas costeras y la costa 500 msnm. Se ha establecido que la superficie de la cuenca colectora húmeda es de 12.412 km², es decir, que el 83% del área de su cuenca contribuye sensiblemente al escurrimiento superficial.

De acuerdo a los estudios de la ONERN (1972) y mediante el sistema de clasificación de zonas de vida en el mundo de HOLDRIDGE, en el ámbito comprendido entre la desembocadura del río Santa y sus límites en las cumbres de la cordillera, se han identificado 14 zonas de vida. El río Santa es uno de los más caudalosos de la costa y en magnitud de cuenca sólo es superado por el del río Chira, en la Región Piura en el norte. Desde el punto de vista hidrológico, la cuenca del río Santa es la más importante de la costa del Perú, por tener el río un caudal de agua importante durante todo el año (Tabla 7). En la época de precipitaciones, éste aumenta hasta 20 veces el caudal que lleva en la época de sequía.

El relieve general de la cuenca es muy accidentado, y al igual que los demás ríos de la costa, tiene una hoya hidrográfica alargada, de fondo profundo con fuentes pendientes y de relieve escarpado y abrupto, cortada por profundas quebradas y estrechas gargantas.

En época de sequía, el agua proviene especialmente de la fusión de los glaciares que, debido a su gran extensión, aporta volúmenes muy considerables de agua, capaces de generar energía en importantes centrales hidroeléctricas y de irrigar extensas zonas agrícolas, especialmente en la costa.

El módulo promedio anual descargado por el río Santa durante el período de 1932-1996 en la estación Puente Carretera es de 142,73 m³/s, la máxima descarga registrada ha sido de 1500 m³/s y ocurrió el 20 de febrero de 1932, la mínima ha sido de 21,20 m³/seg registrado el 12 de julio de 1968.
El comportamiento estacional del río Santa empieza con periodo de avenidas, como promedio en la primera quincena del mes de diciembre, con la presencia de los primeros repuntes notables y termina generalmente en mayo, al presentarse el último pico del hidrograma que antecede a la curva de agotamiento el río.

En la Tabla 7, se aprecia el caudal de descarga del río Santa entre los años 1976 a 1996; se han reportado ocho años El Niño, en los cuales el caudal se incrementa significativamente, por las intensas precipitaciones en la zona de las Andes peruanas, produciendo en muchos de los casos desbordes de sus aguas sobre poblados cercanos a su cauce, así como inundación de zonas agrícolas o ganaderas.

Características hidrográficas e hidrológicas del río Lacramarca

El río Lacramarca tiene su origen en la parte occidental de la Cordillera Negra, de la cual se ha originado la formación de dos quebradas en la parte alta, conocidas como quebradas de Santa Ana y Coles, denominándose río o quebrada Lacramarca a partir de su confluencia. Las descargas del río se deben a las precipitaciones pluviales que ocurren por encima de 2000 msnm.

La tabla 7, se aprecia el caudal de descarga del río Santa entre los años 1976 a 1996; se han reportado ocho años El Niño, en los cuales el caudal se incrementa significativamente, por las intensas precipitaciones en la zona de las Andes peruanas, produciendo en muchos de los casos desbordes de sus aguas sobre poblados cercanos a su cauce, así como inundación de zonas agrícolas o ganaderas.

Algunos indicadores de calidad del agua de los ríos Santa y Lacramarca

En esta evaluación 2002, no sólo se ha considerado el agua de mar sino también las aguas continentales de los ríos Lacramarca y Santa; para ello se han seleccionado las estaciones RL-1 y RS-1 situadas cerca de la descarga del río al mar. En la Tabla 2 se dan las coordenadas geográficas, así como las observaciones realizadas en abril, cuando los ríos presentaban una coloración marrón oscuro por el acarreo de sedimentos y restos de origen vegetal.

Las características químicas evaluadas en abril y julio 2002 (Tabla 3) señalaron una buena oxigenación y nutrientes con valores altos principalmente silicatos (62,74 y 89,70 ug-at/L) y nitratos (52,58 y 55,30 ug-at/L). Cabe resaltar que los coliformes termotolerantes en la estación RS-1 del río Santa y RL-1 del río Lacramarca sobrepasaron los límites permisibles fijados por la LGA para las clases I, III, IV (Aguas de zonas recreativas de contacto primario) y V (Aguas de zona de pesca de mariscos bivalvos). Situación similar se presentó en la evaluación de julio. La DBO₅ en ambas oportunidades, estuvo dentro de lo permisible.

Alteración física y destrucción del hábitat en la zona costera

Además de los ecosistemas marinos, en las zonas costeras existen ecosistemas frágiles, como son los humedales y manglares, que en la actualidad están amenazados por las diversas actividades humanas. La destrucción o alteración de estos ecosistemas origina desequilibrios, no sólo a nivel local sino también a nivel global.

En la zona costera de Chimbote se ubican los humedales de Villa María, entre los distritos de Chimbote y Nuevo Chimbote, cuenca baja del río Lacramarca y abarca unas 150 ha. Se han formado por las filtraciones provenientes del río Lacramarca y ríos agrícolas que se almacenan en las depresiones del terreno y forman las lagunas debido a su escaso drenaje. Son parte del corredor migratorio que siguen numerosas especies de aves a lo largo de la región Neotropical, en búsqueda de espacios temporales para pasar su etapa no reproductiva. Albergan una gran cantidad de recursos naturales (numerosas especies de aves, peces y crustáceos, así como de flora terrestre y acuática, como guineas y carrizos).

Loayza (2000) en su diagnóstico ha registrado siete especies de flora (las principales son *Tessaria integriflora, Scirpus olneyi, Distichlis spicata*), 13 especies de aves (*Bulbucus ibis ibis, Charadrius sp., Larus modestus, Larus dominicanus, Larus pipixcan, Crotaphaga salcirostris, etc.*), 4 especies de peces (ej. *Aequidens rivulatus, Lebiasina bimaculata*), 1 especie de crustáceo (cangrejo de río) y 1 especie de lagartija.

El valor de estos ecosistemas, aparte de los conocidos para las especies de flora y fauna, está referido a su utilidad en la educación ambiental, en el estudio de las interrelaciones entre los diferentes componentes de los ecosistemas, en la formación de una identidad local y además representa un recurso con potencial ecoturístico y, por lo tanto, económico.

La problemática de los humedales de Villa María, es la que en-
frentan los ecosistemas frágiles de la mayoría de las zonas costeras del Perú. Se conoce (Loayza 2000) que este humedal ha perdido hasta 900 ha, desde los años 40, debido a la desecación de las lagunas para posibilitar el desarrollo urbano. Sumado a esto, presentan alta contaminación por arrojo de basura, descomposición de desechos orgánicos y descarga de aguas negras.

DISCUSIÓN

El área de mar y la zona costera de Chimbote, considerada como de grave contaminación por aguas residuales domésticas e industriales, ha sido monitoreada el año 2002 como parte de la Red de Monitoreo Ambiental, mediante la cual se da a conocer las variaciones de su ambiente acuático utilizando indicadores de la calidad de agua de mar en las bahías Coishco y El Ferrol.

La TSM durante mayo y julio ha presentado registros dentro de lo esperado para la estación del año, con temperaturas decrecientes hacia fuera de la bahía, siendo las más altas en la zona de playa.

La SSM, en ambas bahías, presentó las características de aguas de mezcla, principalmente en la zona central, con bajo contenido de sales (<34 ups) ya señalado por Sánchez et al. (1994). Jacinto et al. (1997) y Guzmán et al. (1997), debido a los vertimientos de aguas residuales domésticas e industriales; pero también se debe a las descargas del río Lacramarca en El Ferrol y el río Santa en Coishco, siendo más notable este último que ha determinado que esta pequeña bahía presente aguas de mezcla en toda el área evaluada.

El oxígeno disuelto (OD) a nivel superficial, estuvo dentro de lo permisible según la LGA en las dos evaluaciones efectuadas. Durante la época de pesca en julio, se detectó anoxia en dos estaciones ubicadas, una al frente, y la otra al norte de la zona industrial pesquera. Esta situación fue similar a la encontrada en abril 1996 por Jacinto et al. (1997), cuando a nivel superficial, también se presentaron varias áreas anóxicas e hipóxicas en la bahía El Ferrol. A nivel sub-superficial se apreció la misma tendencia de los últimos años, donde se registraron áreas, por lo general, hipóxicas e inclusive anóxicas.

Los nutrientes a nivel superficial.- Los fosfatos presentaron sus más altas concentraciones en la zona de mezcla de las descargas de los efluentes pesqueros, principalmente en julio; igual resultado obtuvieron Jacinto et al. (1997) en abril 1996, y fueron más altos a lo reportado por Guzmán et al. (1997) en julio 1996. Los silicatos y los nitratos se presentaron altos en la bahía Coishco por influencia del aporte del río Santa; es importante señalar que recién en el año 2002 se ha incorporado el monitoreo de esta zona marina costera de Chimbote. La bahía El Ferrol responde al proceso de afloramiento costero de la zona.

Los sólidos suspendidos totales en ambas evaluaciones no superaron los límites permisibles vigentes (100 mg/L) según la Ley General de Aguas en su clasificación para aguas marítimas de los usos IV y V.

Los sulfuros de hidrógeno, que reflejan una alteración del agua de mar por materia orgánica, alcanzaron valores >1,0 ug-at H2S-S/L en abril, frente a la zona de descarga de aguas residuales. Esta situación no se presentó en julio, cuyos valores fueron muy bajos.

Las trazas de aceites y grasas se percibe que son dispersadas desde el centro de la bahía El Ferrol hacia el sur, por acción de los vientos y corrientes marinas.

La contaminación por coliformes termotolerantes se mantiene constante en la bahía El Ferrol, y sobrepasa los límites permisibles que señala la LGA. En la bahía de Coishco se hallaron valores altos principalmente en la zona central, por las descargas agrícolas unidas a aguas residuales domésticas, que así acumulan niveles que constituyen mucho riesgo para la salud humana, la fauna y la flora que todavia se encuentra en la zona intermárea.

La presencia de trazas de metales en sedimentos ha sido evalua-da en los últimos años. Las mayores concentraciones promedio se registraron en el 2000 con cadmio 5,86 mg/g y cobre 121,52 mg/g. Las más bajas durante el 2002, con cadmio 3,17 mg/g, plomo 3,17 mg/g y cobre 27,09 mg/g. Por lo general, las mayores concentraciones se encontraron en el norte y centro de la bahía.

CONCLUSIONES

- Las aguas residuales domésticas y de la industria pesquera son las principales fuentes de contaminación de materia orgánica a las bahías de Coishco y El Ferrol, siendo más impactante en esta última, por tratarse de una bahía semicerrada.
- Otra fuente de contaminación proviene de la planta side-rúrgica, localizada al extremo norte de la bahía El Ferrol, que vierte en forma puntual una serie de residuos químicos.
- El ambiente marino en las bahías Coishco y El Ferrol, mostró la temperatura en niveles esperados para la zona y estación del año; la salinidad presentó valores de aguas mixohalinas por influencia de los ríos Santa y Lacramarca, principalmente en el mes de abril, así como de las acequias y corrientes agrícolas en el caso de Coishco.
- Los niveles de oxígeno disuelto en abril estuvieron dentro de los límites permisibles, pero en julio se presentó anoxia frente a la zona industrial pesquera en la bahía El Ferrol, y en Coishco se presentó hipoxia en forma muy puntual.
- Los nutrientes en la bahía de Coishco presentaron valores altos en sedimentos y fosfatos por influencia del aporte del río Santa especialmente en el mes de abril. En la bahía El Ferrol se presentaron principalmente aguas de surgencia y mezcla; en julio se evidenció menor influencia de las aguas continentales.
- Los valores de SST, en ambas bahías, durante abril y julio estuvieron bajos y dentro de los
Tabla 1. Parámetros físicos de las bahías El Ferrol y Coishco, río Santa (RS) y río Lacramarca (RL), Chimbote. 29 al 30 de abril y 24 al 27 de julio de 2002

<table>
<thead>
<tr>
<th>Bahía</th>
<th>Estación</th>
<th>Posición</th>
<th>Prof. (m)</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Temp. (°C)</th>
<th>Sal. transp. (ups)</th>
<th>Tipo de Sedimento</th>
<th>Transp. (m)</th>
<th>JULIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>COISHCO</td>
<td>A</td>
<td>09°00'09.3"</td>
<td>78°38'56.3"</td>
<td>17.7</td>
<td>34,686</td>
<td>1.30</td>
<td>Arena fina</td>
<td>16.5</td>
<td>33,985</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°00'20.8"</td>
<td>78°39'00.9"</td>
<td>18.0</td>
<td>34,753</td>
<td>1.50</td>
<td>Arena fina</td>
<td>16.5</td>
<td>34,765</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°01'01.5"</td>
<td>78°38'00.8"</td>
<td>18.8</td>
<td>33,901</td>
<td>0.80</td>
<td>---</td>
<td>16.5</td>
<td>34,930</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°00'35.2"</td>
<td>78°38'50.1"</td>
<td>18.5</td>
<td>34,770</td>
<td>1.20</td>
<td>---</td>
<td>16.6</td>
<td>34,027</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°01'26.1"</td>
<td>78°39'58.0"</td>
<td>18.0</td>
<td>34,809</td>
<td>5.00</td>
<td>Arena gruesa</td>
<td>16.8</td>
<td>35,078</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°04'53.2"</td>
<td>78°35'22.1"</td>
<td>21.0</td>
<td>34,715</td>
<td>2.00</td>
<td>Fango Arenoso</td>
<td>18.3</td>
<td>34,836</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°04'39.8"</td>
<td>78°37'09.6"</td>
<td>20.0</td>
<td>34,750</td>
<td>2.00</td>
<td>---</td>
<td>18.2</td>
<td>34,559</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°06'58.3"</td>
<td>78°34'28.0"</td>
<td>21.0</td>
<td>34,685</td>
<td>---</td>
<td>Fango Arenoso</td>
<td>17.3</td>
<td>34,622</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°06'13.1"</td>
<td>78°35'59.9"</td>
<td>20.5</td>
<td>34,788</td>
<td>3.00</td>
<td>---</td>
<td>17.3</td>
<td>34,883</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°07'08.0"</td>
<td>78°36'54.1"</td>
<td>20.0</td>
<td>34,850</td>
<td>3.50</td>
<td>---</td>
<td>17.2</td>
<td>34,971</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°08'28.4"</td>
<td>78°35'48.2"</td>
<td>20.0</td>
<td>34,618</td>
<td>3.00</td>
<td>Fango</td>
<td>17.0</td>
<td>35,092</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°08'02.4"</td>
<td>78°34'38.3"</td>
<td>20.5</td>
<td>34,668</td>
<td>---</td>
<td>Fango</td>
<td>16.8</td>
<td>35,067</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°09'29.9"</td>
<td>78°35'54.5"</td>
<td>18.8</td>
<td>34,975</td>
<td>3.50</td>
<td>---</td>
<td>16.6</td>
<td>35,066</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°05'35.5"</td>
<td>78°35'01.7"</td>
<td>18.5</td>
<td>35,048</td>
<td>---</td>
<td>---</td>
<td>17.6</td>
<td>34,688</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°07'10.1"</td>
<td>78°35'39.4"</td>
<td>22.0</td>
<td>35,048</td>
<td>---</td>
<td>---</td>
<td>16.8</td>
<td>34,719</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°09'24.1"</td>
<td>78°34'29.3"</td>
<td>18.5</td>
<td>34,975</td>
<td>---</td>
<td>---</td>
<td>16.6</td>
<td>35,056</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°09'24.1"</td>
<td>78°34'29.3"</td>
<td>17.5</td>
<td>34,975</td>
<td>---</td>
<td>---</td>
<td>16.6</td>
<td>35,056</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09°09'24.1"</td>
<td>78°34'29.3"</td>
<td>17.5</td>
<td>34,975</td>
<td>---</td>
<td>---</td>
<td>16.6</td>
<td>35,056</td>
<td>4.20</td>
</tr>
</tbody>
</table>

Estaciones de playa y curso inferior de la cuenca baja los ríos Santa y Lacramarca

<table>
<thead>
<tr>
<th>Ríos</th>
<th>Prof. (m)</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Temp. (°C)</th>
<th>Sal. transp. (ups)</th>
<th>Transp. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>08°59'50.5"</td>
<td>78°38'37.3"</td>
<td>18.0</td>
<td>34,144</td>
<td>---</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>09°00'54.7"</td>
<td>78°37'11.2"</td>
<td>21.0</td>
<td>21,208</td>
<td>---</td>
<td>16.8</td>
</tr>
<tr>
<td>C</td>
<td>09°01'26.4"</td>
<td>78°37'41.2"</td>
<td>20.0</td>
<td>33,297</td>
<td>---</td>
<td>18.1</td>
</tr>
<tr>
<td>D</td>
<td>09°04'50.2"</td>
<td>78°35'00.3"</td>
<td>23.0</td>
<td>30,660</td>
<td>---</td>
<td>19.1</td>
</tr>
<tr>
<td>E</td>
<td>09°04'14.5"</td>
<td>78°36'38.4"</td>
<td>21.8</td>
<td>33,574</td>
<td>---</td>
<td>18.5</td>
</tr>
<tr>
<td>F</td>
<td>09°06'37.1"</td>
<td>78°33'44.6"</td>
<td>22.0</td>
<td>34,440</td>
<td>---</td>
<td>18.1</td>
</tr>
<tr>
<td>G</td>
<td>09°07'32.8"</td>
<td>78°33'27.4"</td>
<td>21.9</td>
<td>34,492</td>
<td>---</td>
<td>17.7</td>
</tr>
<tr>
<td>H</td>
<td>09°08'26.2"</td>
<td>78°33'28.1"</td>
<td>19.3</td>
<td>33,658</td>
<td>---</td>
<td>18.0</td>
</tr>
<tr>
<td>I</td>
<td>09°10'02.1"</td>
<td>78°34'12.1"</td>
<td>19.5</td>
<td>35,030</td>
<td>---</td>
<td>16.9</td>
</tr>
<tr>
<td>RL</td>
<td>09°07'41.9"</td>
<td>78°33'31.3"</td>
<td>27.0</td>
<td>---</td>
<td>---</td>
<td>21.4</td>
</tr>
<tr>
<td>Bahía</td>
<td>Estación</td>
<td>Localidad</td>
<td>Fecha</td>
<td>Posición Geográfica</td>
<td>Observaciones</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitud S</td>
<td>Longitud W</td>
<td>Inicio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11:08</td>
<td>11:28</td>
<td>Arena gruesa, restos vegetales (tallos, ramas), bolsas y frascos plásticos, restos de animales, presencia de gaviotas (Larus pipixcan) y ganzas blancas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resto</td>
<td>8:40</td>
<td>9:04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13:55</td>
<td>14:05</td>
<td>Playa de canto rogado, agua limpia, extremo de la bahía al lado de planta pesquera.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Presencia de desechos sólidos, restos de animales, desechos industriales, presencia de gallinazos en la descarga del efluente de la siderúrgica.</td>
<td>Restos de alzas marinas, conchuelas, plásticos, agua de mar color marrón con tonalidad rojiza, colector de la siderúrgica.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17:28</td>
<td>18:11</td>
<td>Zona de playa donde se encuentran las pozas de tratamiento de aguas residuales de la actividad de las plantas pesqueras</td>
</tr>
</tbody>
</table>
Tabla 3.- Variables químicas de las bahías El Ferrol y Coishco, Chimbote. Del 29 al 30 de abril y del 24 al 27 de julio de 2002

<table>
<thead>
<tr>
<th>Bahía</th>
<th>Estación</th>
<th>PROF.</th>
<th>OXIG. (mL/L)</th>
<th>Fosfatos ug-at/L</th>
<th>Silicatos ug-at/L</th>
<th>Nitratos ug-at/L</th>
<th>Nitritos ug-at/L</th>
<th>OXIG. (mL/L)</th>
<th>Fosfatos ug-at/L</th>
<th>Silicatos ug-at/L</th>
<th>Nitratos ug-at/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>COISHCO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5.02</td>
<td>2.58</td>
<td>76.64</td>
<td>16.47</td>
<td>1.19</td>
<td>3.15</td>
<td>6.84</td>
<td>21.52</td>
<td>12.36</td>
<td>2.30</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4.25</td>
<td>4.21</td>
<td>25.97</td>
<td>16.04</td>
<td>1.44</td>
<td>3.18</td>
<td>3.44</td>
<td>18.43</td>
<td>16.66</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.56</td>
<td>2.77</td>
<td>20.43</td>
<td>15.21</td>
<td>1.25</td>
<td>2.55</td>
<td>3.92</td>
<td>17.89</td>
<td>15.53</td>
<td>1.27</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4.42</td>
<td>2.44</td>
<td>38.32</td>
<td>19.93</td>
<td>1.25</td>
<td>2.40</td>
<td>6.36</td>
<td>19.98</td>
<td>15.52</td>
<td>2.17</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2.68</td>
<td>3.87</td>
<td>23.52</td>
<td>15.33</td>
<td>1.15</td>
<td>2.61</td>
<td>3.97</td>
<td>17.89</td>
<td>15.97</td>
<td>1.13</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3.72</td>
<td>11.57</td>
<td>19.25</td>
<td>15.86</td>
<td>0.48</td>
<td>3.21</td>
<td>4.25</td>
<td>18.43</td>
<td>15.97</td>
<td>1.25</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>4.49</td>
<td>18.64</td>
<td>37.68</td>
<td>17.41</td>
<td>1.67</td>
<td>1.92</td>
<td>8.17</td>
<td>19.25</td>
<td>13.64</td>
<td>2.53</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>5.02</td>
<td>2.58</td>
<td>76.64</td>
<td>16.47</td>
<td>1.19</td>
<td>3.15</td>
<td>6.84</td>
<td>21.52</td>
<td>12.36</td>
<td>2.30</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>4.25</td>
<td>4.21</td>
<td>25.97</td>
<td>16.04</td>
<td>1.44</td>
<td>3.18</td>
<td>3.44</td>
<td>18.43</td>
<td>16.66</td>
<td>1.25</td>
</tr>
</tbody>
</table>

EL FERROL											
10	0	3.06	1.67	5.72	1.49	0.67	0.00	18.12	20.97	1.00	2.30
11	0	4.85	2.49	12.80	5.03	1.13	4.49	16.62	5.93	5.93	1.30
12	0	5.55	2.15	6.08	4.43	0.67	4.20	2.45	7.87	1.05	1.05
13	0	6.0	8.20	2.27	0.95	0.63	5.49	2.77	6.72	12.11	1.25
14	0	4.19	5.54	31.78	1.52	0.86	5.15	3.39	7.02	1.17	1.17
15	0	4.93	22.66	13.98	7.73	1.13	4.71	5.59	9.26	8.34	2.01
16	0	1.81	11.62	24.79	15.39	1.27	3.57	2.87	9.53	7.00	1.80
17	0	3.67	1.72	8.72	7.08	0.94	5.14	2.49	5.27	10.61	0.98
18	0	2.27	3.63	8.99	4.47	0.96	3.89	3.15	7.81	11.10	0.96
19	0	0.33	3.20	28.78	16.13	1.34	3.38	3.39	15.13	12.39	0.96

| Estaciones de playa y curso inferior de la cuenca baja de los ríos Santa y Lacramarca |
|-----------------------------------|-----------------------------------|
| COISHCO | |
| A | 0.00 | 12.96 | 8.90 | 5.87 | 0.69 |
| B | 0.00 | 12.96 | 8.90 | 5.87 | 0.69 |
| C | 0.00 | 12.96 | 8.90 | 5.87 | 0.69 |

<table>
<thead>
<tr>
<th>EL FERROL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.00</td>
</tr>
<tr>
<td>E</td>
<td>0.00</td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
</tr>
<tr>
<td>H</td>
<td>0.00</td>
</tr>
<tr>
<td>I</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>0.00</td>
</tr>
<tr>
<td>RL1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

RS: Río Santa
RL: Río Lacramarca
<table>
<thead>
<tr>
<th>Estación</th>
<th>PROF. (m)</th>
<th>NMP.100 mL⁻¹</th>
<th>NMP.100 mL⁻¹</th>
<th>DBO₅ mg L⁻¹</th>
<th>SST mg L⁻¹</th>
<th>Grasas mg L⁻¹</th>
<th>Sulfuros ug-at H₂S-S.L⁻¹</th>
<th>NMP.100 mL⁻¹</th>
<th>NMP.100 mL⁻¹</th>
<th>DBO₅ mg L⁻¹</th>
<th>SST mg L⁻¹</th>
<th>Grasas mg L⁻¹</th>
<th>Sulfuros ug-at H₂S-S.L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>COISH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2.55</td>
<td>29.20</td>
<td>1.70</td>
<td>0.53</td>
<td>4.3 x 10⁵</td>
<td>4.3 x 10⁵</td>
<td>3.16</td>
<td>23.50</td>
<td>5.66</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.55</td>
<td>22.40</td>
<td>1.30</td>
<td>0.61</td>
<td>4.3 x 10⁵</td>
<td>4.3 x 10⁵</td>
<td>3.78</td>
<td>18.93</td>
<td>4.55</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.1 x 10⁵</td>
<td>7.5 x 10²</td>
<td>4.50</td>
<td>0.68</td>
<td>4.3 x 10⁵</td>
<td>4.3 x 10⁵</td>
<td>2.10</td>
<td>12.87</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>9.3 x 10²</td>
<td>4.3 x 10²</td>
<td>1.30</td>
<td>0.48</td>
<td>4.3 x 10⁵</td>
<td>9.3 x 10²</td>
<td>2.10</td>
<td>12.87</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1.60</td>
<td>24.40</td>
<td>0.50</td>
<td>0.59</td>
<td>4.3 x 10⁵</td>
<td>4.3 x 10²</td>
<td>2.53</td>
<td>23.50</td>
<td>5.66</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>7.5 x 10²</td>
<td>4.3 x 10²</td>
<td>2.10</td>
<td>0.94</td>
<td>4.3 x 10⁵</td>
<td>9.3 x 10²</td>
<td>4.45</td>
<td>9.09</td>
<td>0.80</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2.70</td>
<td>26.80</td>
<td>1.00</td>
<td>0.00</td>
<td>4.3 x 10³</td>
<td>4.3 x 10⁵</td>
<td>11.28</td>
<td>3.08</td>
<td>0.49</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EL FERROL</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>3.45</td>
<td>7.95</td>
<td>1.10</td>
<td>0.00</td>
<td>4.3 x 10⁵</td>
<td>4.3 x 10²</td>
<td>19.75</td>
<td>12.59</td>
<td>2.95</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>4.3 x 10²</td>
<td>2.3 x 10²</td>
<td>1.80</td>
<td>0.53</td>
<td>4.3 x 10⁵</td>
<td>4.3 x 10²</td>
<td>16.90</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>4.0 x 10</td>
<td><30</td>
<td>3.60</td>
<td>0.55</td>
<td>2.1 x 10³</td>
<td>4.6 x 10⁵</td>
<td>20.15</td>
<td>27.61</td>
<td>0.81</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td><30</td>
<td>23.57</td>
<td>0.65</td>
<td><30</td>
<td>4.80</td>
<td>7.30</td>
<td>10.50</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>12.42</td>
<td>1.16</td>
<td>0.00</td>
<td>0.00</td>
<td>9.0 x 10<³</td>
<td>1.76</td>
<td>10.10</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>15.59</td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>4.0 x 10<³</td>
<td>1.76</td>
<td>13.92</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>4.0 x 10</td>
<td><30</td>
<td>1.95</td>
<td>0.52</td>
<td>2.1 x 10³</td>
<td>9.3 x 10²</td>
<td>23.41</td>
<td>27.61</td>
<td>0.81</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td><30</td>
<td>10.74</td>
<td>0.00</td>
<td>0.00</td>
<td>2.3 x 10³</td>
<td>9.3 x 10²</td>
<td>30.50</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td><30</td>
<td>28.50</td>
<td>5.00</td>
<td>1.05</td>
<td>9.3 x 10³</td>
<td>4.6 x 10⁵</td>
<td>4.6 x 10³</td>
<td>25.62</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>9.3 x 10³</td>
<td>4.6 x 10⁵</td>
<td>25.62</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>9.3 x 10³</td>
<td>4.6 x 10³</td>
<td>25.62</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>9.3 x 10³</td>
<td>4.6 x 10³</td>
<td>25.62</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIOS</td>
<td></td>
</tr>
<tr>
<td>RS1</td>
<td>0</td>
<td>2.3 x 10³</td>
<td>9.3 x 10³</td>
<td>3.40</td>
<td>0.00</td>
<td>2.3 x 10³</td>
<td>2.3 x 10³</td>
<td>3.37</td>
<td>35.29</td>
<td>0.61</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL1</td>
<td>0</td>
<td>2.3 x 10³</td>
<td>4.3 x 10³</td>
<td>6.00</td>
<td>0.00</td>
<td>2.3 x 10³</td>
<td>1.5 x 10³</td>
<td>2.86</td>
<td>105.77</td>
<td>0.60</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.- Variables de Calidad Ambiental de las bahías El Ferrol y Coishco, Chimbote. 29-30 abril y 24-27 julio 2002
Tabla 5.- Valores de trazas de metales e hidrocarburos de petróleo en sedimentos de la bahía El Ferrol y los ríos Santa y Lacramarca, Chimbote. Abril 2002.

<table>
<thead>
<tr>
<th>Estación</th>
<th>Posición Geográfica</th>
<th>Prof. (m)</th>
<th>Trazas de metales en sedimentos</th>
<th>Hidrocarburos de Petróleo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LS</td>
<td>LW</td>
<td>Cd (ug/g)</td>
<td>Pb (ug/g)</td>
</tr>
<tr>
<td>8</td>
<td>09°04’53.2”</td>
<td>78°35’22.1”</td>
<td>7.50</td>
<td>1,58</td>
</tr>
<tr>
<td>10</td>
<td>09°06’58.3”</td>
<td>78°34’28.0”</td>
<td>8.50</td>
<td>5,22</td>
</tr>
<tr>
<td>14</td>
<td>09°08’28.4”</td>
<td>78°35’48.2”</td>
<td>13,50</td>
<td>1,85</td>
</tr>
<tr>
<td>15</td>
<td>09°08’02.4”</td>
<td>78°34’38.3”</td>
<td>9,50</td>
<td>2,03</td>
</tr>
<tr>
<td>Valor Promedio</td>
<td></td>
<td></td>
<td>9,75</td>
<td>2,67</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td></td>
<td></td>
<td>7,50</td>
<td>1,58</td>
</tr>
<tr>
<td>Valor máximo</td>
<td></td>
<td></td>
<td>13,50</td>
<td>5,22</td>
</tr>
<tr>
<td>RS1</td>
<td></td>
<td></td>
<td>1,39</td>
<td>0,63</td>
</tr>
<tr>
<td>RL1</td>
<td></td>
<td></td>
<td>0,41</td>
<td>ND</td>
</tr>
</tbody>
</table>

HDT = Hidrocarburos totales disueltos en agua
HAT = Hidrocarburos aromáticos totales en sedimentos

Tabla 6.- Concentración de trazas de metales en organismos marinos capturados en la bahía El Ferrol, Chimbote. 5 al 6 agosto 2002

<table>
<thead>
<tr>
<th>Especie</th>
<th>Nombre Común</th>
<th>N° de Ejemp.</th>
<th>Lugar de Captura</th>
<th>Longitud Rango (mm)</th>
<th>Parte del Cuerpo Analizado</th>
<th>Metales Trazas Analizadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thais chocolata</td>
<td>Caracol negro (1)</td>
<td>20</td>
<td>El Perro</td>
<td>36,8 - 49,4</td>
<td>Cuerpo eviscerado</td>
<td>Cd (ug/g)</td>
</tr>
<tr>
<td>Gari solida</td>
<td>Almeja</td>
<td>3</td>
<td>Coishco</td>
<td>68,2 - 79,5</td>
<td>Cuerpo eviscerado</td>
<td>1,99</td>
</tr>
<tr>
<td>Thais chocolata</td>
<td>Caracol negro (2)</td>
<td>15</td>
<td>Isla Blanca</td>
<td>45,5 - 66,2</td>
<td>Cuerpo eviscerado</td>
<td>2,06</td>
</tr>
<tr>
<td>Platyxantus orbignyi</td>
<td>Cangrejo (1)</td>
<td>5</td>
<td>Hueco de la Vela</td>
<td>47,9 - 66,6</td>
<td>Quelas</td>
<td>1,91</td>
</tr>
<tr>
<td>Platyxantus orbignyi</td>
<td>Cangrejo (2)</td>
<td>4</td>
<td>Isla Blanca</td>
<td>63,8 - 69,6</td>
<td>Quelas</td>
<td>1,91</td>
</tr>
<tr>
<td>Stellifer minor</td>
<td>Mojarilla</td>
<td>5</td>
<td></td>
<td>115,0 - 135,0</td>
<td>Tejido muscular</td>
<td>1,79</td>
</tr>
<tr>
<td>Isacia conceptionis</td>
<td>Cabinza</td>
<td>3</td>
<td></td>
<td>145,0 - 150,0</td>
<td>Tejido muscular</td>
<td>2,15</td>
</tr>
<tr>
<td>Odonthestes regia regia</td>
<td>Pejerrey</td>
<td>6</td>
<td></td>
<td>135,0 - 150,0</td>
<td>Tejido muscular</td>
<td>2,21</td>
</tr>
</tbody>
</table>
Tabla 7.- Volumen (m³/s) del caudal del río Santa durante veinte años (1976-1996)

<table>
<thead>
<tr>
<th>Año</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Promedio Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976*</td>
<td>253,73</td>
<td>304,99</td>
<td>547,32</td>
<td>-1,00</td>
<td>76,64</td>
<td>84,00</td>
<td>48,43</td>
<td>43,71</td>
<td>46,24</td>
<td>68,22</td>
<td>75,53</td>
<td>85,92</td>
<td>146,79</td>
</tr>
<tr>
<td>1977</td>
<td>157,02</td>
<td>394,43</td>
<td>292,83</td>
<td>186,95</td>
<td>94,11</td>
<td>69,30</td>
<td>50,40</td>
<td>53,68</td>
<td>56,30</td>
<td>67,52</td>
<td>109,49</td>
<td>124,02</td>
<td>138,00</td>
</tr>
<tr>
<td>1978</td>
<td>111,80</td>
<td>193,03</td>
<td>152,44</td>
<td>129,69</td>
<td>-1,00</td>
<td>62,94</td>
<td>48,74</td>
<td>45,58</td>
<td>83,55</td>
<td>64,78</td>
<td>93,34</td>
<td>109,23</td>
<td>97,74</td>
</tr>
<tr>
<td>1979</td>
<td>137,63</td>
<td>226,81</td>
<td>386,26</td>
<td>196,35</td>
<td>98,44</td>
<td>61,63</td>
<td>50,42</td>
<td>49,47</td>
<td>57,74</td>
<td>67,44</td>
<td>96,07</td>
<td>104,39</td>
<td>127,80</td>
</tr>
<tr>
<td>1980</td>
<td>121,16</td>
<td>135,14</td>
<td>121,55</td>
<td>66,28</td>
<td>58,88</td>
<td>47,91</td>
<td>51,33</td>
<td>65,29</td>
<td>104,03</td>
<td>133,29</td>
<td>223,80</td>
<td>104,20</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>153,70</td>
<td>329,05</td>
<td>158,02</td>
<td>158,02</td>
<td>79,46</td>
<td>62,54</td>
<td>45,30</td>
<td>45,51</td>
<td>80,51</td>
<td>151,19</td>
<td>173,94</td>
<td>138,37</td>
<td></td>
</tr>
<tr>
<td>1982*</td>
<td>156,31</td>
<td>282,69</td>
<td>187,79</td>
<td>187,79</td>
<td>89,79</td>
<td>61,21</td>
<td>48,01</td>
<td>43,36</td>
<td>46,44</td>
<td>101,86</td>
<td>160,10</td>
<td>221,07</td>
<td>131,60</td>
</tr>
<tr>
<td>1983*</td>
<td>266,27</td>
<td>157,27</td>
<td>269,53</td>
<td>144,60</td>
<td>94,05</td>
<td>73,74</td>
<td>65,95</td>
<td>65,33</td>
<td>77,55</td>
<td>93,72</td>
<td>161,63</td>
<td>147,33</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>145,13</td>
<td>555,28</td>
<td>308,16</td>
<td>174,53</td>
<td>97,59</td>
<td>65,09</td>
<td>48,67</td>
<td>49,69</td>
<td>102,27</td>
<td>79,35</td>
<td>140,71</td>
<td>192,74</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>132,15</td>
<td>144,01</td>
<td>212,81</td>
<td>212,81</td>
<td>104,67</td>
<td>63,81</td>
<td>52,82</td>
<td>51,44</td>
<td>73,23</td>
<td>72,07</td>
<td>81,08</td>
<td>111,85</td>
<td>107,57</td>
</tr>
<tr>
<td>1986*</td>
<td>212,93</td>
<td>200,57</td>
<td>308,02</td>
<td>308,02</td>
<td>126,57</td>
<td>68,50</td>
<td>56,86</td>
<td>55,38</td>
<td>55,62</td>
<td>70,63</td>
<td>98,82</td>
<td>154,03</td>
<td>136,03</td>
</tr>
<tr>
<td>1987*</td>
<td>332,90</td>
<td>309,74</td>
<td>163,30</td>
<td>163,30</td>
<td>108,66</td>
<td>66,68</td>
<td>59,19</td>
<td>54,73</td>
<td>60,79</td>
<td>73,70</td>
<td>110,70</td>
<td>169,02</td>
<td>145,40</td>
</tr>
<tr>
<td>1988</td>
<td>289,55</td>
<td>347,65</td>
<td>269,48</td>
<td>269,48</td>
<td>123,15</td>
<td>68,33</td>
<td>55,02</td>
<td>52,02</td>
<td>56,47</td>
<td>73,44</td>
<td>85,64</td>
<td>103,35</td>
<td>144,73</td>
</tr>
<tr>
<td>1989</td>
<td>201,36</td>
<td>363,14</td>
<td>324,71</td>
<td>324,71</td>
<td>85,96</td>
<td>60,97</td>
<td>46,54</td>
<td>42,62</td>
<td>45,57</td>
<td>93,04</td>
<td>86,22</td>
<td>66,00</td>
<td>148,08</td>
</tr>
<tr>
<td>1990</td>
<td>125,20</td>
<td>121,12</td>
<td>97,81</td>
<td>97,81</td>
<td>49,16</td>
<td>48,10</td>
<td>39,72</td>
<td>38,83</td>
<td>37,12</td>
<td>84,52</td>
<td>105,16</td>
<td>99,29</td>
<td>79,72</td>
</tr>
<tr>
<td>1991*</td>
<td>116,44</td>
<td>141,78</td>
<td>132,62</td>
<td>132,62</td>
<td>86,37</td>
<td>46,98</td>
<td>36,84</td>
<td>36,90</td>
<td>37,13</td>
<td>53,09</td>
<td>58,04</td>
<td>78,56</td>
<td>97,58</td>
</tr>
<tr>
<td>1992*</td>
<td>105,89</td>
<td>86,77</td>
<td>127,01</td>
<td>127,01</td>
<td>66,33</td>
<td>44,17</td>
<td>35,88</td>
<td>37,20</td>
<td>40,40</td>
<td>63,88</td>
<td>63,91</td>
<td>64,44</td>
<td>72,89</td>
</tr>
<tr>
<td>1993*</td>
<td>101,48</td>
<td>320,68</td>
<td>121,01</td>
<td>-1,00</td>
<td>-1,00</td>
<td>60,27</td>
<td>54,26</td>
<td>50,44</td>
<td>65,39</td>
<td>99,85</td>
<td>209,22</td>
<td>896,00</td>
<td>215,71</td>
</tr>
<tr>
<td>1995</td>
<td>148,13</td>
<td>154,87</td>
<td>275,45</td>
<td>275,45</td>
<td>88,81</td>
<td>57,03</td>
<td>47,76</td>
<td>51,27</td>
<td>51,04</td>
<td>56,80</td>
<td>102,54</td>
<td>143,50</td>
<td>118,95</td>
</tr>
<tr>
<td>1996</td>
<td>243,98</td>
<td>244,73</td>
<td>315,14</td>
<td>315,14</td>
<td>60,50</td>
<td>38,31</td>
<td>30,52</td>
<td>29,54</td>
<td>30,32</td>
<td>-1,00</td>
<td>-1,00</td>
<td>-1,00</td>
<td>156,58</td>
</tr>
</tbody>
</table>

Valores Promedio de Veinte años

| | 185,20 | 263,65 | 285,57 | 189,83 | 85,19 | 62,60 | 49,27 | 46,54 | 52,13 | 71,73 | 97,17 | 157,09 | 133,20 |

* Años con presencia de eventos El Niño

Fuente: Consorcio COPEX. Balance hidrológico del Río Santa 1997
límites permisibles de la LGA. Igualmente los sulfuros de hidrógeno presentaron concentraciones bajas en la mayoría de las estaciones. Los aceites y grasas se presentaron en forma puntual, con valores significativos al sureste de la bahía El Ferrol.

- La DBO₅ se presentó con valores ligeramente altos en julio en ambas bahías; con los mayores niveles frente a las plantas pesqueras y a la zona de descarga de aguas residuales en ambas bahías; con los mayores niveles principalmente en el mes de abril y la DBO₅ se halló dentro de lo permisible según la LGA.

- En la bahía de Coishco existieron elevados valores de coliformes termotolerantes, principalmente en la zona central bahía. En El Ferrol los valores de coliformes termotolerantes sobrepasaron la LGA para las clases IV, V y VI.

- Las trazas de cadmio, plomo y cinc en las evaluaciones de abril y julio 2002, se han presentado como las más bajas concentraciones promedio de los últimos dos años.

- Las hidrocarburos en sedimentos, en general, fueron bajos; pero ligeramente elevados en zonas donde la actividad de cabotaje es alta.

- El río Santa, en su extremo de la cuenca baja, mostró altos niveles de silicatos y nitratos, aportes que se reflejan en la zona costera; la contaminación por coliformes termotolerantes principalmente en el mes de abril y la DBO₅, se halló dentro de los niveles permisibles en los dos meses evaluados.

- No se detectó bioacumulación en trazas de metales de cadmio, cinc y plomo en tejido blando de almeja, pique o señorita y caracol negro, a niveles de riesgo para el desarrollo óptimo de estas especies o que pongan en riesgo el ecosistema marino al que pertenecen.

RECOMENDACIÓN

Es necesario la aplicación de un programa adecuado de ordeñamiento territorial de la zona de Chimbote, para obtener las condiciones que permitan el uso positivo del espacio geográfico y se den las medidas de saneamiento ambiental en las bahías de Coishco y El Ferrol, para evitar el riesgo a la salud humana y dar protección a los ecosistemas marino costeros.

Agradecimientos.- Se deja expreso agradecimiento al Dr. Álvaro Tresierra, al Blgo. Pedro Berrú, a los técnicos de la Sede IMARPE Chimbote, por el apoyo constante durante los muestreos efectuados en el año 2002, que hizo posible el inicio de la implementación del monitoreo por el Laboratorio Ambiental de Chimbote como parte de la Red de Monitoreo del Ambiente Marino a lo largo de la costa. A la bióloga Carmen Ruiz, al ingeniero Jesús Lejedema y a los técnicos Carlos Robles y Martín Campos por el apoyo en los análisis microbiológicos y físico químicos.

Referencias

BAHÍA DEL CALLAO, PERÚ. EVALUACIÓN AMBIENTAL EN MARZO 2002

CALLAO BAY, PERU. ENVIRONMENTAL ASSESSMENT IN MARCH 2002

Guadalupe Sánchez Rita Orozco Manuel Guzmán

Unidad de Monitoreo y Gestión Marino Costera. DIAGCAC. IMARPE. gsanchez@imarpe.gob.pe

RESUMEN

SÁNCHEZ G, OROZCO R, GUZMÁN M. 2008. Bahía del Callao. Perú. Evaluación ambiental en marzo 2002. Inf. Inst. Mar Perú. 35(1):27-41. - En 26 estaciones de muestreo, 17 por mar y 9 por línea costera, se evaluaron: a) parámetros ambientales físicos y químicos, b) indicadores de contaminación microbiológica; c) aporte de carga orgánica por colectores de aguas residuales domésticas e industriales sin tratamiento; d) trazas de metales pesados en sedimentos y en organismos. En sedimentos del fondo se registró: cadmio (0,81 a 5,47 mg/g), plomo (12,00 a 120,25 mg/g), cobre (7,72 a 74,7 mg/g) y cinc (8,94 a 197,16 mg/g). Los valores altos estuvieron frente al terminal portuario del Callao y la desembocadura del río Rímac; y los bajos, frente a la isla San Lorenzo. Se evaluaron trazas de metal en los músculos de tres moluscos: almeja, Gari solida; pique o señorita, Crepipatella dilatata y caracol negro, Stramonita chocolata. Los efluentes industriales, domésticos y las aguas del Rímac, que arrastran contaminantes hacia la zona central de la bahía del Callao, producen un impacto negativo sobre la calidad del agua, cuyos valores superan ampliamente los límites permisibles de la Ley General de Aguas para las clases IV, V y VI. La contaminación en la bahía del Callao no ha variado en los últimos 22 años, por lo que mantiene su calificación de grave contaminación de tipo crónica. De ahí surge la necesidad de aplicar las medidas de saneamiento integral, mediante el tratamiento de las aguas residuales que se vierten a esta bahía, en forma directa e indirecta, para dar la protección adecuada al ambiente marino y minimizar los riesgos para la salud humana.

PALABRAS CLAVE: calidad del agua, contaminación microbiológica, metales, bahía del Callao, mar peruano.

ABSTRACT

SÁNCHEZ G, OROZCO R, GUZMÁN M. 2008. Callao Bay, Peru. Environmental assessment in March 2002. Inf Inst Mar Peru. 35 (1): 27-41. - At 26 stations, 17 by sea and 9 by coastline, different parameters were evaluated: a) physical and chemical, b) indicators of microbiological contamination; c) the amount of organic mater from domestic and industrial wastewater dumped into the bay without any treatment, d) heavy metal trace levels in sediments and organisms. In bottom sediments the results were: cadmium (0.81 to 5.47 mg/g), lead (12.00 to 120.25 mg/g), copper (7.72 to 74.7 mg/g) and zinc (8.94 to 197.16 mg/g). Higher values in general were found off Callao Port Terminal and the Rímac river mouth; and low values were recorded off San Lorenzo Island. Traces of metal in the muscles were evaluated in three mollusks: clam, Gari solida, pique or señorita, Crepipatella dilatata and black snail, Stramonita chocolata. The issuance of industrial and domestic effluents and Rímac river water carry organic matter into the central area of Callao Bay, producing a negative impact on water quality, with values beyond the permissible limits of the General Water Law for classes IV, V and VI. Pollution in the bay of Callao has not changed in the past 22 years, so it maintains its rating of severe chronic contamination. Hence, emerges the need for management measures such as integral sanitation with the treatment of wastewater dumped into the bay, to give adequate protection to the marine environment and minimize the risks to human health.

KEYWORDS: water quality, microbiologic pollution, metals, Callao Bay, Peruvian sea.

INTRODUCCIÓN

En marzo 2002, el IMARPE efectuó una evaluación de la calidad del ambiente marino y la zona costera de la bahía del Callao, siguiendo el Plan Operativo Institucional como parte de la Red de Monitoreo. Se han analizado los parámetros de calidad del agua de mar, y los niveles de contaminación en los sedimentos y algunos organismos marinos.

El ámbito marino costero ha sido calificado como de grave contaminación por los trabajos de Guillén (1981). En la década de los noventa, dentro del Convenio Corde Callao e IMARPE se efectuaron trabajos sobre la evaluación de la calidad de medio marino (Jacinto et al. 1994), evaluación microbiológica en agua de mar (Sánchez et al. 1994), y un informe sobre el inventario regional de fuentes terrestres de contaminación Sánchez y Orozco (1996), donde señalan el gran volumen de residuos líquidos y sólidos que van finalmente a la zona del litoral de Márquez, Oquendo, Acapulco y otras zonas marginales del Callao.

El presente estudio se realizó en el área comprendida entre los 11°54’00” y 12°05’38”S, hasta una distancia aproximada de 2,5 millas de costa, utilizando como medio
de transporte la Patrullera BAP Cañete. Se utilizaron 26 estaciones distribuidas en la bahía Callao por mar y línea costera. Se determinó la carga orgánica de 3 efluentes domésticos e industriales, para conocer su impacto sobre la calidad del agua de la bahía del Callao.

MATERIAL Y MÉTODOS
Se establecieron 17 estaciones hidrográficas (Figura 1); se colectaron muestras de agua a nivel de superficie y a un metro del fondo. Se utilizaron los métodos propios del IMARPE para registrar temperatura, salinidad, circulación marina con dirección e intensidad de flujos, oxígeno disuelto, pH, nutrientes, sólidos suspendidos, aceites y grasas, sulfuros de hidrógeno, DBO, y coliformes; y en estaciones pre establecidas se tomaron muestras para análisis de hidrocarburos de petróleo y trazas de metales.

RESULTADOS
Características hidrológicas y oceanográficas
Los días 19 y 20 de marzo 2002 se llevaron a cabo los registros en áreas seleccionadas de la bahía del Callao. La Tabla 1 reúne las variables físicas y químicas. En la Tabla 2 se anotan las variables de la calidad de agua. En la Tabla 3 se describen las características de las 11 playas observadas.
Temperatura (°C).- En la Figura 2a se representan los datos en superficie (promedio 22,2 °C); las mínimas correspondieron a las desemboeaduras de los ríos Chillón (20,8 °C) y Rímac (21,0 °C), y las máximas, al suroeste de la Punta, frente a Carpayo (25,6 °C).

A nivel subsuperficial, a un metro del fondo (Figura 2b), entre la Refinería La Pampilla y la desembocadura del río Rímac los valores fueron de 19,1 a 21,5 °C; al suroeste de La Punta la temperatura fue mayor, con aguas hasta de 21,5 °C.

Salinidad (ups).- En superficie (18,3 a 34,7 ups), la concentración salina estuvo influenciada por la descarga de los ríos Chillón y Rímac (Figura 3a). Entre La Punta e isla San Lorenzo, por la convergencia de aguas de la bahía Miraflores, se acercó a valores normales, hasta 34,7 ups.

En la capa subsuperficial, o de fondo, la salinidad se presentó más estable y homogénea (Figura 3b).

Circulación marina (cm/s).- A 0,5 m de la superficie la intensidad fue 7 a 15 cm/s (promedio 11,9) (Figura 4a); en la franja costera al norte del río Rímac, se registraron flujos proyectados hacia el norte y una contracorriente frente a la boca del río Chillón. Frente a La Punta, se registró la convergencia de flujos procedentes de las bahías Callao y Miraflores. La intensidad, entre 5 y 10 cm/s, tuvo un promedio de 7,8 cm/s.

Oxígeno disuelto (ml/L).- A nivel de superficie, de 1,12 y 8,54 ml/L (Figura 5a). El máximo se halló frente a la Pampilla y playa Márquez; el mínimo, frente al río Rímac. En fondo los valores variaron de 0,05 a 1,65, pero frente a La Punta se halló el máximo de 3,67 (Figura 5b).

Potencial de iones Hidronio (pH).- En superficie varió de 7,41 a
8,30 (Figura 6a), promedio 7,85; los pH más altos estuvieron asociados a mayor temperatura y de oxígeno disuelto. En la Figura 6b, en el nivel subsuperficial, se observa la misma tendencia.

Nutrientes (ug-at/L)

Los **Fosfatos**, en superficie (1,53 y 7,07 ug-at/L, Figura 7a), los altos valores se registraron dentro de 1,0 msn, entre playa Márquez y el nuevo emisor del Callao (6,0 a 7,0), y decrecieron al alejarse de la costa. En el fondo (0,91 a 3,78 ug-at/L, Figura 7b), los mayores valores se registraron en las estaciones más costeras (Mar Brava, La Punta y frente al río Rímac).

Los **Silicatos**, en superficie tuvieron amplio rango (5,54 a 78,09 ug-at/L, Figura 8a) con las mínimas en la Mar Brava, La Punta; fueron mayores al norte de la bahía del Callao, frente al río Chillón (78,09 ug-at/L). En el fondo (5,08 a 14,71 ug-at/L, Figura 8b) tuvieron una distribución relativamente uniforme.

Los **Nitratos**, A nivel superficial (4,77 a 21,02 ug-at/L, Figura 9a) en la mayor parte del área costera el contenido fue de 6,0 a 8,0 ug-at/L, y alcanzó su máxima frente al río Chillón. En el fondo (5,08 a 14,71 ug-at/L, Figura 9b) fue similar a la superficie, con las mínimas en Mar Brava y La Punta.

Los Nitratos, en superficie (0,26 a 1,86 ug-at/L, Figura 10a) se distribuyeron en forma homogénea. En el fondo, los valores (0,86 a 2,79 ug-at/L, Figura 10b) mostraron tendencia de incremento hacia el sur.

Demanda bioquímica de oxígeno (DBO₅, ug/L). Los valores de DBO₅ fueron bajos (1,41 a 13,10 ug/L, Figura 11) con el máximo frente al colector Comas, que sobrepasó el límite permisible de 10 ug/L establecido por la LGA, para los diferentes usos del agua de mar. En la estación situada a 800 m frente a la desembocadura del río Chillón se registró 9,6 ug/L.

Sólidos suspendidos totales (SST, mg/L). A nivel superficial el rango fue de 4,31 a 267,31 mg/L; promedio de 33,88 mg/L; el valor más bajo se registró en la estación frente al río Rímac.
Fig. 11.- Distribución de la Demanda Bioquímica de Oxígeno (mg/L) a nivel superficial. 12 de Marzo 2002.

Fig. 12.- Sólidos Suspendidos Totales (mg/L) en a) Superficie b) Fondo. Bahía de Callao. Marzo 2002.

Fig. 13.- Distribución de Sulfuros de Hidrógeno (ug-at H₂S-S/L) a nivel fondo. Bahía de Callao. Marzo de 2002.

Fig. 14.- Distribución de aceites y grasas (mg/L) a nivel superficial. Bahía de Callao. Marzo de 2002.
entre Ventanilla (Figura 18) y Fertiza (Figura 19) variaron de 4×10^4 a 2.0×10^9 NMP/100 mL, y los Estreptococos Fecales de 9.0×10^6 a 2.1×10^{13} NMP/100 mL; el máximo se halló en la zona de mezcla con el colector Comas. Valores menores se registraron entre La Punta y Mar Brava. Los Coliformes Termotolerantes variaron entre <30 a 9.3×10^2 NMP/100 mL, este último registrado en Mar Brava, superó el límite permisible para la clase V de la LGA. Los Estreptococos Fecales fueron más elevados (1.5×10^2 a 9.3×10^2 NMP/100 mL).

Los valores de DBO$_5$ tuvieron un rango de 2.65 a 45.01 mg/L, este máximo valor se registró en la zona de mar frente al Colector Comas (Figura 20); en la playa Oquendo (Figura 21) se obtuvo 13.58 mg/L. Ambos sobrepasaron los requisitos de calidad de agua (10 mg/L) establecido en la LGA.

Los SST a nivel de playa, sólo en dos estaciones mostraron valores por encima de los límites permisibles (Tabla 3); fue el caso de la zona de mezcla del efluente de Fertiza con el colector Comas. El valor más bajo se obtuvo en las playas de Ventanilla, al norte de la bahía del Callao.

Evaluación de efluentes.- Los aportes de materia orgánica y bacterias fecales procedentes de efluentes puntuales y no puntuales fueron significativas. La DBO$_5$ llegó a 112.10 mg/L (Tabla 4) en el colector Comas, a 25.80 mg/L en el efluente Fertiza, y a 20.20 mg/L en el Colector de AGA. El rango de los coliformes termotolerantes fue de 9.3×10^2 a 2.3×10^{17} NMP/100 mL y de los estreptococos fecales de 4.3×10^2 y 9.3×10^4 NMP/100 mL.

Evaluación de metales en trazas

En sedimentos (Ver Tabla 5)

La mayor concentración de Cadmio Total (5.47 mg/g) se detectó en la estación 13, a 9.5 m de profundidad; ligeramente inferior al del sedimento superficial de la bahía San Vicente, Chile (3 a 5.8 mg/g), calificada como no contaminada (Ahumada 1992). El menor valor (0.81 mg/g), en la Playa...
Márquez y el valor medio fue 3,34 mg/g. La distribución espacial se concentró en la entrada al Terminal Portuario del Callao (5 mg/g, Figura 23a) con gradiente de disminución hacia el norte.

En la misma estación 13 a 9,5 m de profundidad se halló la mayor concentración de Plomo Total (120,25 mg/g); esta concentración fue superior al rango (19 a 54 mg/g) mencionado para la bahía San Vicente, Chile. El menor valor (12,00 mg/g) se registró frente a la isla San Lorenzo y el valor medio fue de 47,57 mg/g. La distribución se concentró en la entrada al Terminal Portuario del Callao (110 mg/g, Figura 23b) con gradiente de disminución hacia el oeste.

En la estación 12, frente a la boca del río Rímac, a 7,0 m de profundidad, se detectó la mayor concentración de Cobre Total (74,77 mg/g) que fue superior al valor mayor del rango en el sedimento superficial de la bahía San Vicente, Chile (50 a 68 mg/g), calificada de no contaminada. La concentración media del área fue de 37,38 mg/g. En la Figura 24a se observa que las mayores concentraciones de cobre se localizaron al frente del río Rímac.

El mayor contenido de Cinc Total (197,16 mg/g) se detectó en la Estación 13 a 9,5 m de profundidad, con promedio de 58,65 mg/g. La distribución espacial de cinc muestra el gradiente de concentración hacia la línea costera, especialmente en la boca de ingreso al Terminal Portuario del Callao, donde se ubicó un núcleo de 190 mg/g (Figura 24b).

En la Figura 25 se observan las concentraciones medias de Cd, Pb, Cu, Zn, registradas en el Callao durante el 2001 y 2002. En el año 2001 se registró mayor concentración promedio de cobre adsorbido en el sedimento superficial que en el año 2002.

En organismos

En la Figura 26 se grafica la concentración promedio de metales pesados (cadmio, plomo, cobre y cinc) registrados en el homogenato de tejido obtenido de las tres especies de moluscos analizados en la bahía del Callao. Ver también Tabla 6.
Almeja, *Gari solida.*- Se analizó el cuerpo eviscerado de cinco ejemplares de almeja (LV de 48,7 a 76,0 mm) con una masa media representativa con valva de 80,30 gramos. El cadmio alcanzó los 0,96 mg/g de muestra liofilizada. No se detectó plomo. El cobre total alcanzó 1,96 mg/g, valor inferior a 10,00 mg/g seco establecido como máximo en la India (FAO 1983). La concentración de cinc fue muy baja; el límite legal para este metal es de 50 mg/g de peso seco.

Pique o señorita, *Crepipatella dilatada.*- Se evisceraron 24 ejemplares (LV de 20,7 a 40,2 mm) con una masa media representativa con valva de 5,6 gramos. La concentración de cadmio total fue de 2,4 mg/g. No se detectó plomo. El cobre total fue de 14,85 mg/g. El zinc total detectado alcanzó 0,09 mg/g.

Caracol negro, *Stramonita choco-lata.*- Se evisceraron 9 ejemplares (LV de 51,0 a 67,0 mm) con una masa media representativa con valva de 50,3 gramos. El cadmio total detectado fue de 1,74 mg/g; el plomo, de 0,14 mg/g; el cobre, de 40,94 mg/g; el total de cinc detectado fue muy bajo (0,31 mg/g). Cabe señalar que por el tipo de dieta alimentaria en esta especie, la ingesta de partículas con metales trazas es más directa que en otros moluscos, inclusive bivalvos.

DISCUSIÓN

La bahía del Callao ha sido considerada como de grave contaminación presente en el área marina, diferenciada en cuanto al tipo y nivel de contaminación, sea por sustancias orgánicas, elementos químicos o por agentes microbiológicos (Guillén 1981, Sánchez y Orozco 1997, CPPS 2000).

En la Zona Norte, entre Venta-nilla hasta el río Chillón, la contaminación es de tipo orgánico por aguas residuales domésticas tratadas en lagunas de oxidación, descargadas en acequias de regadío, aunque la capacidad de tratamiento alcanza sólo al 53% de los producidos en dicha zona (CONAM 2001). La presencia incidental de residuos de hidrocarburos de petróleo está influenciada por la ac-

Esta situación hace que la zona de mar, así como del litoral costero presenten señales claras de contaminación, principalmente por las aguas servidas descargados por los tres colectores en dicha zona: el emisor Centenario o Callao (4 m³/s), el emisor Comas (2,2 m³/s) y el colector Bocanegra (0,68 m³/s). El emisor Comas tiene aguas residuales provenientes de un “Proyecto de tratamiento de aguas negras” para la irrigación de cultivos agrícolas (Proyecto BioPlanta GMBH 2001) con activa participación del gobierno local, una agencia alemana y la población de la zona de Oquendo (122 ha), con el objetivo de mejorar
la calidad del agua de irrigación utilizada en esta zona agrícola del Callao mediante el tratamiento de agua de irrigación de humedales artificiales y la educación de los agricultores y de los constructores de las áreas húmedas artificiales.

En esta zona se realiza una intensa actividad portuaria, además de actividad pesquera industrial y artesanal, por lo cual existen hidrocarburos disueltos y dispersos (HDD), aceites y grasas. En esta oportunidad no se evaluaron los hidrocarburos de petróleo, pero sí los aceites y grasas, en áreas donde se presume por la influencia de actividades que puedan originar este tipo de contaminante.

En la Zona Sur que abarca Chuchito y La Punta hasta la Mar Brava, la actividad es de tipo doméstica, comercial, pesquera artesanal, pesquera deportiva y de recreación (baños) en época de verano. Generalmente es la zona de mejor calidad de agua de mar.

La Baja Salinidad encontrada en la zona central de la bahía del Callao, entre los ríos Chillón y Rimac, estuvo influenciada por las descargas de estos ríos. Los valores fueron similares a los de agosto 1999, aunque en invierno fue mayor debido a la disminución del caudal.

El Oxígeno Disuelto a nivel superficial, tanto por mar como por playa, tuvo altos valores. Esta situación se relaciona a la ocurrencia de mareas rojas con alta producción de oxígeno. Los hipoxias (<1,0 mL/L) se presentaron por la materia orgánica que descargan los ríos y por los efluentes domésticos e industriales en la zona.

Los Nutrientes, fosfatos, sales de y nitratos, han presentado incrementos, comparada con los resultados de 1997 (Orozco 1999), cuya variación estuvo sujeta a El Niño 1997-98; y en el 2002 se recibieron nutrientes terrígenos.

Los Sulfuros, que tienen una relación inversa con la concentración de oxígeno en el agua de mar, se presentaron bajos (<1,0 ug-at H2S-S/L). Los mayores valores se registraron frente terminal portuario del Callao, con tendencia de distribución similar a las de agosto 2000 y 2001, es decir, que los valores disminuyen a mayor distancia de la costa.

La Contaminación del Mar por Aguas Residuales se manifiesta por indicadores como el DBO5, cuya mayor concentración se encontró en la zona donde descargan los emisores Comas y Centenario. Otros indicadores son los sólidos suspendidos totales (SST), con valores <20 mg/L a nivel superficial y subsuperficial, en el 41% de las estaciones; por ejemplo, frente a
Márquez (Figura 22), la concentración llegó a 267.31 mg/L. Por playas los resultados también fueron altos, por presencia de basura o sólidos vertidos por emisores y colectores de la zona. Estos valores superan la normativa de la Ley General de Aguas en las clases IV, V y VI.

Los aceites y grasas tuvieron su mayor concentración en zonas donde se ubica el fondeadero de embarcaciones pesqueras industriales, frente al terminal portuario del Callao y al norte de la refinería La Pampilla. Su distribución sigue la orientación suroeste de la circulación del agua de mar, dirigiéndose hacia el sur de la isla San Lorenzo, diferente a lo hallado en agosto 2000.

La contaminación fecal en la zona entre Ventanilla y Fertiza fue similar a la registrada en el 2001 (JACINTO ET AL. DATOS NO PUBLICADOS), pero mayor a la de agosto 1999 (CABELLO ET AL. 2000) y de agosto 2000 (Guzmán et al. 2001).

La evaluación de trazas de metales en sedimentos se realiza desde 1994 (Guzmán 1994). Debe referirse a la intensa actividad minera andina de los valles Chillón y Chillón, sumada a la múltiple actividad industrial que utiliza compuestos químicos, cuyas aguas residuales se descargan directamente y sin mayor tratamiento a ríos, o indirectamente al mar.

El promedio de cadmio obtenido en este trabajo ha sido 3,34 ug/g. en el verano 1995 fue 3,36 ug/g; en junio 1997, 5,50 ug/g y en agosto 2000, 5,63 ug/g.

Las mayores concentraciones de plomo total (120,25 ug/g) fueron menores a lo detectado por Guzmán en marzo 1994 (293,80 ug/g) y en agosto 2001 (344,22 ug/g).

El máximo nivel de cobre (74,77 ug/g), fue menor al de marzo 1994 (255,43 ug/g). Las mayores cifras se localizaron frente a los ríos Rímac y Chillón, además de los emisores Comas y Callao, principalmente.

Cabe señalar que el nivel de cadmio, plomo y cobre está directamente relacionado a los valores de materia orgánica y al tipo de textura del sedimento, principalmente de grano fino en combinaciones de arcilla y limos (Velazco 1999).

Asimismo, las concentraciones en trazas de cadmio, plomo, cobre y cinc, en el tejido corporal de los organismos marinos analizados, fueron bajos en relación a lo establecido como máximo en el Reglamento de la Comisión Europea 211/2002 y por lo establecido como valor máximo en la India (FAO 1983). Los resultados para Crepita dilatata y Thais chalastra presentaron valores ligeramente por encima de lo permisible señalado por FAO (1983). En este sentido, en los moluscos analizados, no se hallaron evidencias de bioacumulación de trazas de metales, que pongan en riesgo o impacten negativamente su ciclo de vida.

CONCLUSIONES

1.- Las condiciones de saneamiento y protección de los ecosistemas marino-costeros, continúan similares a la situación existente en la década de los años ochenta, cuando se iniciaron los monitoreos en forma puntual.

2.- Los parámetros ambientales, como temperatura, estuvieron dentro de lo esperado para la época estival; sin embargo, las temperaturas más altas se hallaron fuera de la línea costera.

3.- En la salinidad marina se evidenció la influencia de las descargas de los ríos Rímac y Chillón, además de los emisores Comas y Callao, principalmente.

4.- No se detectó anoxia a nivel superficial, pero si una hipoxia severa en varias de las áreas evaluadas, principalmente frente a la isla San Lorenzo, probablemente por influencia de la convergencia de flujos que se presentaron en la zona.

5.- Se apreció el comportamiento característico en la zona comprendida entre La Punta y la isla San Lorenzo, por convergencia de dos masas de agua procedentes de las bahías Callao y Miraflores.

6.- Los elevados valores de coliformes termotolerantes y DBO, en la zona comprendida entre Ventanilla y Fertiza, indican una contaminación de tipo crónica, con valores que superan ampliamente los límites máximos permisibles establecidos en la LGA para las clases IV, V y VI.

7.- En la presente evaluación, marzo 2002, los valores registrados han sido más elevados que los de setiembre 2001.

8.- La mayor concentración de cadmio, plomo y cinc en sedimentos, se detectó en la estación 13, dentro de la zona portuaria y de la zona industrial del Callao. En el caso del cobre, la concentración más alta de los sedimentos proviene del río Rímac.

9.- Las mayores concentraciones de cobre se detectaron en los moluscos pique o señorita y en caracol negro, superando la concentración máxima permisible de 10 mg/g (FAO 1983).

10.- No se detectó bioacumulación en trazas de metales de cadmio, cinc y plomo en tejido blando de almeja, pique o señorita y caracol negro a niveles de riesgo para el desarrollo óptimo de estas especies, o que ponga en riesgo el ecosistema marino o la salud humana.

Agradecimientos.- Se deja constancia de agradecimiento al Blgo. EDGARDO ENRÍQUEZ por el apoyo en la confección de gráficos e igualmente a la Sra. ANA VILLEGAS en la confección de tablas y figuras.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12°05'05.5"</td>
<td>77°08'17.1"</td>
<td>12</td>
<td>25.6</td>
<td>34,713</td>
<td>240*</td>
<td>8</td>
<td>1,53</td>
<td>6,99</td>
<td>4,77</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>21.6</td>
<td>34,908</td>
<td>190*</td>
<td>7</td>
<td>3,35</td>
<td>11,26</td>
<td>5,30</td>
<td>2,05</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12°05'38.0"</td>
<td>77°10'55.6"</td>
<td>12.5</td>
<td>21.4</td>
<td>34,189</td>
<td>120*</td>
<td>13</td>
<td>2,77</td>
<td>11,99</td>
<td>9,18</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>19.5</td>
<td>34,907</td>
<td>110*</td>
<td>9</td>
<td>2,39</td>
<td>8,44</td>
<td>8,75</td>
<td>1,59</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12°04'16.0"</td>
<td>77°12'17.3"</td>
<td>13</td>
<td>21.3</td>
<td>32,153</td>
<td>165*</td>
<td>12</td>
<td>2,82</td>
<td>15,25</td>
<td>8,18</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>19.1</td>
<td>34,837</td>
<td>230*</td>
<td>10</td>
<td>2,44</td>
<td>11,08</td>
<td>9,67</td>
<td>2,13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12°04'44.6"</td>
<td>77°10'30.3"</td>
<td>5</td>
<td>23.5</td>
<td>33,756</td>
<td>10*</td>
<td>7</td>
<td>2,63</td>
<td>5,54</td>
<td>6,25</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>21.2</td>
<td>34,549</td>
<td>350*</td>
<td>5</td>
<td>3,59</td>
<td>5,08</td>
<td>8,83</td>
<td>1,42</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12°03'31.0"</td>
<td>77°09'49.0"</td>
<td>8</td>
<td>21.4</td>
<td>33,686</td>
<td>180*</td>
<td>10</td>
<td>1,58</td>
<td>7,35</td>
<td>5,93</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>19.8</td>
<td>34,836</td>
<td>190*</td>
<td>6</td>
<td>3,73</td>
<td>12,35</td>
<td>5,60</td>
<td>1,69</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12°00'25.0"</td>
<td>77°08'35.0"</td>
<td>7</td>
<td>21.9</td>
<td>33,488</td>
<td>10*</td>
<td>9</td>
<td>6,79</td>
<td>14,35</td>
<td>9,39</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>19.3</td>
<td>34,889</td>
<td>190*</td>
<td>5</td>
<td>3,78</td>
<td>10,81</td>
<td>7,16</td>
<td>2,49</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12°00'33.9"</td>
<td>77°09'39.9"</td>
<td>9.5</td>
<td>22.7</td>
<td>32,509</td>
<td>10*</td>
<td>13</td>
<td>4,11</td>
<td>13,89</td>
<td>10,92</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>19.7</td>
<td>34,892</td>
<td>350*</td>
<td>9</td>
<td>2,01</td>
<td>6,17</td>
<td>11,14</td>
<td>1,78</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12°01'51.0"</td>
<td>77°10'52.0"</td>
<td>24</td>
<td>21.5</td>
<td>27,897</td>
<td>220*</td>
<td>10</td>
<td>2,63</td>
<td>34,87</td>
<td>8,54</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>19.8</td>
<td>34,726</td>
<td>200*</td>
<td>8</td>
<td>2,15</td>
<td>6,36</td>
<td>7,90</td>
<td>1,23</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12°01'30.0"</td>
<td>77°08'52.0"</td>
<td>7</td>
<td>21.0</td>
<td>27,917</td>
<td>5*</td>
<td>9</td>
<td>4,49</td>
<td>38,50</td>
<td>6,99</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>19.7</td>
<td>34,917</td>
<td>350*</td>
<td>6</td>
<td>3,20</td>
<td>8,72</td>
<td>4,86</td>
<td>2,70</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12°02'32.0"</td>
<td>77°09'42.0"</td>
<td>9.5</td>
<td>21.8</td>
<td>31,587</td>
<td>20*</td>
<td>11</td>
<td>2,44</td>
<td>16,89</td>
<td>7,91</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>20.5</td>
<td>34,757</td>
<td>40*</td>
<td>7</td>
<td>3,01</td>
<td>9,62</td>
<td>7,51</td>
<td>1,44</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12°02'32.0"</td>
<td>77°10'26.0"</td>
<td>16</td>
<td>21.8</td>
<td>32,687</td>
<td>210*</td>
<td>12</td>
<td>3,06</td>
<td>14,07</td>
<td>6,75</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>20.2</td>
<td>34,847</td>
<td>190*</td>
<td>8</td>
<td>3,44</td>
<td>5,90</td>
<td>7,49</td>
<td>1,38</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>11°54'00.0"</td>
<td>77°09'45.0"</td>
<td>16</td>
<td>22.3</td>
<td>33,005</td>
<td>120*</td>
<td>15</td>
<td>2,63</td>
<td>6,90</td>
<td>6,61</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>19.3</td>
<td>34,924</td>
<td>180*</td>
<td>10</td>
<td>2,29</td>
<td>10,99</td>
<td>9,22</td>
<td>1,82</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11°56'18.0"</td>
<td>77°08'28.0"</td>
<td>6.5</td>
<td>20.8</td>
<td>18,846</td>
<td>10*</td>
<td>10</td>
<td>2,72</td>
<td>78,09</td>
<td>21,02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>19.7</td>
<td>34,494</td>
<td>355*</td>
<td>7</td>
<td>1,86</td>
<td>7,63</td>
<td>13,75</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>11°57'46.0"</td>
<td>77°08'28.0"</td>
<td>9.5</td>
<td>23.1</td>
<td>34,514</td>
<td>90*</td>
<td>10</td>
<td>7,07</td>
<td>27,78</td>
<td>5,64</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>19.8</td>
<td>34,562</td>
<td>120*</td>
<td>9</td>
<td>1,86</td>
<td>7,17</td>
<td>9,41</td>
<td>1,65</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>11°57'45.5"</td>
<td>77°09'37.5"</td>
<td>13</td>
<td>22.6</td>
<td>31,657</td>
<td>5*</td>
<td>13</td>
<td>3,15</td>
<td>21,07</td>
<td>11,52</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>19.4</td>
<td>34,809</td>
<td>340*</td>
<td>10</td>
<td>2,68</td>
<td>14,71</td>
<td>8,74</td>
<td>0,86</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>11°56'10.0"</td>
<td>77°08'31.0"</td>
<td>15.5</td>
<td>22.8</td>
<td>31,298</td>
<td>140*</td>
<td>13</td>
<td>1,72</td>
<td>12,71</td>
<td>12,23</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19.5</td>
<td>34,874</td>
<td>240*</td>
<td>9</td>
<td>0,91</td>
<td>12,08</td>
<td>11,77</td>
<td>1,19</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>11°59'33.0"</td>
<td>77°10'39.0"</td>
<td>11</td>
<td>22.2</td>
<td>33,638</td>
<td>30*</td>
<td>12</td>
<td>2,06</td>
<td>5,81</td>
<td>8,67</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>19.5</td>
<td>34,870</td>
<td>330*</td>
<td>8</td>
<td>2,16</td>
<td>8,63</td>
<td>11,31</td>
<td>1,86</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2.- Variables de la calidad acuática en áreas seleccionadas.
Bahía Callao. 19 al 20 de marzo 2002

<table>
<thead>
<tr>
<th>Est.</th>
<th>Oxígeno (mL/L)</th>
<th>pH</th>
<th>SST (mg/L)</th>
<th>Sulfuros (ug-at H²S-STL)</th>
<th>DBO₅ (mg/L)</th>
<th>AyG (mg/L)</th>
<th>Coiliformes Totales NMP/100mL</th>
<th>Termo Tolerantes NMP/100mL</th>
<th>Streptococos NMP/100mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.54</td>
<td>8.30</td>
<td>18.80</td>
<td>4.10</td>
<td>2.3x10⁸</td>
<td>4.0x10⁸</td>
<td>4.3x10⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>7.66</td>
<td>36.15</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.36</td>
<td>7.83</td>
<td>4.31</td>
<td>2.17</td>
<td>2.3x10²</td>
<td>4.0x10⁸</td>
<td>2.3x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>7.71</td>
<td>3.23</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.97</td>
<td>7.77</td>
<td>10.89</td>
<td>2.13</td>
<td>7.0x10⁵</td>
<td>9.0x10⁵</td>
<td>2.3 x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.52</td>
<td>7.69</td>
<td>56.68</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.40</td>
<td>7.93</td>
<td>17.55</td>
<td>2.92</td>
<td>9.3 x10³</td>
<td>9.0x10⁵</td>
<td>4.3x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.67</td>
<td>7.91</td>
<td>15.20</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.08</td>
<td>7.89</td>
<td>13.06</td>
<td>2.17</td>
<td>2.3x10²</td>
<td>2.3x10²</td>
<td>2.3 x10³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>7.63</td>
<td>49.20</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.84</td>
<td>7.51</td>
<td>7.52</td>
<td>4.08</td>
<td>4.6x10⁴</td>
<td>4.6x10⁴</td>
<td>4.6x10³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>7.67</td>
<td>13.47</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.62</td>
<td>7.77</td>
<td>12.11</td>
<td>3.30</td>
<td>2.3 x10³</td>
<td>2.3 x10³</td>
<td>2.3 x10³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.26</td>
<td>7.71</td>
<td>3.50</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.20</td>
<td>7.69</td>
<td>12.65</td>
<td>1.07</td>
<td>2.3 x10²</td>
<td>2.3 x10²</td>
<td>2.3 x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.03</td>
<td>7.69</td>
<td>3.75</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.12</td>
<td>7.41</td>
<td>35.94</td>
<td>4.61</td>
<td>2.3x10⁵</td>
<td>2.1x10⁵</td>
<td>4.6x10³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>7.54</td>
<td>12.50</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.17</td>
<td>7.84</td>
<td>15.51</td>
<td>1.41</td>
<td>4.3 x10³</td>
<td>2.3 x10²</td>
<td>9.3x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>7.66</td>
<td>56.68</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.82</td>
<td>7.91</td>
<td>16.67</td>
<td>2.18</td>
<td>9.3 x10²</td>
<td>4.3x10²</td>
<td>2.3x10⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td>7.72</td>
<td>44.84</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6.54</td>
<td>7.99</td>
<td>15.42</td>
<td>6.22</td>
<td>4.3x10³</td>
<td>9.0x10⁵</td>
<td>9.3x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>7.56</td>
<td>17.58</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.50</td>
<td>7.77</td>
<td>85.98</td>
<td>2.65</td>
<td>2.3x10⁵</td>
<td>2.1x10⁵</td>
<td>1.5x10⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.18</td>
<td>7.84</td>
<td>18.58</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10.34</td>
<td>8.11</td>
<td>267.31</td>
<td>13.10</td>
<td>9.3 x10²</td>
<td>1.5x10²</td>
<td>4.3x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>7.67</td>
<td>15.20</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.00</td>
<td>7.86</td>
<td>6.80</td>
<td>9.60</td>
<td>2.3x10⁵</td>
<td>4.3x10²</td>
<td>7.0x10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>7.65</td>
<td>28.57</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6.13</td>
<td>8.00</td>
<td>23.11</td>
<td>3.54</td>
<td>1.5 x10³</td>
<td>4.0x10⁵</td>
<td>7.5x10²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td>7.67</td>
<td>16.67</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5.08</td>
<td>7.93</td>
<td>14.28</td>
<td>3.07</td>
<td>2.1x10⁵</td>
<td>4.0x10⁵</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.89</td>
<td>7.64</td>
<td>13.20</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est.</td>
<td>Lugar</td>
<td>Oxígeno (mL/L)</td>
<td>pH</td>
<td>Sulfuros mg/L</td>
<td>DO₉S mg/L</td>
<td>SST (mg/L)</td>
<td>A y G (mg/L)</td>
<td>Coliformes Totales NMP/100ml</td>
<td>Temo-terorantes NMP/100ml</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>----</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>A</td>
<td>Ventanilla</td>
<td>5,30</td>
<td>8,03</td>
<td>0,71</td>
<td>6,65</td>
<td>15,94</td>
<td>2,82</td>
<td>4,3 x 10^3</td>
<td>1,5 x 10^3</td>
</tr>
<tr>
<td>C</td>
<td>Zona mezcla, Chillón</td>
<td>4,88</td>
<td>7,82</td>
<td>0,76</td>
<td>4,15</td>
<td>24,31</td>
<td>5,94</td>
<td>2,3 x 10^5</td>
<td>2,3 x 10^5</td>
</tr>
<tr>
<td>C1</td>
<td>Playa Márquez</td>
<td>4,85</td>
<td>7,94</td>
<td>0,87</td>
<td>5,50</td>
<td>41,14</td>
<td>—</td>
<td>4,3 x 10^3</td>
<td>9,3 x 10^5</td>
</tr>
<tr>
<td>F</td>
<td>Oquendo</td>
<td>5,07</td>
<td>8,15</td>
<td>0,58</td>
<td>13,58</td>
<td>70,00</td>
<td>0,20</td>
<td>9,3 x 10^4</td>
<td>4,3 x 10^5</td>
</tr>
<tr>
<td>G</td>
<td>Zona de mezcla de Fertiliz</td>
<td>0,85</td>
<td>ND</td>
<td>3,40</td>
<td>ND</td>
<td>160,00</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>G1</td>
<td>Zona de mezcla con Emisor Comas</td>
<td>4,70</td>
<td>ND</td>
<td>1,11</td>
<td>45,01</td>
<td>103,89</td>
<td>0,60</td>
<td>1,5 x 10^3</td>
<td>2,3 x 10^11</td>
</tr>
<tr>
<td>K</td>
<td>Terminal Pesquero</td>
<td>9,02</td>
<td>7,51</td>
<td>1,03</td>
<td>3,66</td>
<td>18,04</td>
<td>0,69</td>
<td>2,3 x 10^4</td>
<td>2,3 x 10^4</td>
</tr>
<tr>
<td>M</td>
<td>Mar Brava-Carpayo</td>
<td>3,85</td>
<td>8,08</td>
<td>0,83</td>
<td>3,31</td>
<td>27,45</td>
<td>0,49</td>
<td>4,3 x 10^3</td>
<td>9,3 x 10^3</td>
</tr>
<tr>
<td>O</td>
<td>Colico- Arenilla</td>
<td>0,88</td>
<td>8,41</td>
<td>0,83</td>
<td>2,65</td>
<td>20,49</td>
<td>0,60</td>
<td>4 x 10</td>
<td>4 x 10</td>
</tr>
<tr>
<td>P</td>
<td>Playa Cantolao</td>
<td>0,89</td>
<td>7,67</td>
<td>0,65</td>
<td>2,65</td>
<td>22,44</td>
<td>0,47</td>
<td>4 x 10</td>
<td>4 x 10</td>
</tr>
<tr>
<td>Q1</td>
<td>100m del colector Centenario o Callao, Zona de mezcla</td>
<td>5,04</td>
<td>ND</td>
<td>0,70</td>
<td>ND</td>
<td>51,98</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Tabla 4.- Parámetros químicos y microbiológicos de efluentes domésticos e industriales del Callao por líneas de playa. 19 - 20 marzo 2002

<table>
<thead>
<tr>
<th>Estación</th>
<th>DBO₅ mg/L</th>
<th>Coliformes</th>
<th>Streptococos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Totales NMP/100 mL</td>
<td>Termotolerantes NMP/100 mL</td>
<td>Fecales NMP/100 mL</td>
</tr>
<tr>
<td>AGA Colector</td>
<td>20,20</td>
<td>4,3 x 10⁷</td>
<td>9,3 x 10⁷</td>
</tr>
<tr>
<td>Colector Comas</td>
<td>112,10</td>
<td>2,3 x 10¹⁷</td>
<td>9,3 x 10¹⁴</td>
</tr>
<tr>
<td>Fertiza Colector</td>
<td>25,80</td>
<td>2,3 x 10⁹</td>
<td>2,3 x 10⁹</td>
</tr>
</tbody>
</table>

Tabla 5.- Trazas de metales en sedimentos. Bahía del Callao. 19 - 20 marzo 2002 Referido a muestra liofilizada

<table>
<thead>
<tr>
<th>Estación</th>
<th>Fondo (m)</th>
<th>Cd (ug/g)*</th>
<th>Pb (ug/g)*</th>
<th>Cu (ug/g)*</th>
<th>Zn (ug/g)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12,5</td>
<td>0,86</td>
<td>26,67</td>
<td>21,58</td>
<td>23,28</td>
</tr>
<tr>
<td>3</td>
<td>13,0</td>
<td>4,98</td>
<td>12,00</td>
<td>7,72</td>
<td>8,94</td>
</tr>
<tr>
<td>5</td>
<td>8,0</td>
<td>4,27</td>
<td>57,80</td>
<td>30,90</td>
<td>26,24</td>
</tr>
<tr>
<td>8</td>
<td>7,0</td>
<td>3,49</td>
<td>47,10</td>
<td>35,81</td>
<td>46,28</td>
</tr>
<tr>
<td>9</td>
<td>9,5</td>
<td>2,51</td>
<td>28,69</td>
<td>27,37</td>
<td>35,91</td>
</tr>
<tr>
<td>10</td>
<td>24,0</td>
<td>2,87</td>
<td>31,98</td>
<td>38,57</td>
<td>20,81</td>
</tr>
<tr>
<td>12</td>
<td>7,0</td>
<td>4,60</td>
<td>111,90</td>
<td>74,77</td>
<td>185,96</td>
</tr>
<tr>
<td>13</td>
<td>9,5</td>
<td>5,47</td>
<td>120,25</td>
<td>53,16</td>
<td>197,16</td>
</tr>
<tr>
<td>17</td>
<td>16,0</td>
<td>3,57</td>
<td>22,20</td>
<td>43,99</td>
<td>22,90</td>
</tr>
<tr>
<td>22</td>
<td>9,5</td>
<td>0,81</td>
<td>17,75</td>
<td>39,96</td>
<td>18,97</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>11,3</td>
<td>3,34</td>
<td>47,57</td>
<td>37,38</td>
</tr>
<tr>
<td>Mínimo</td>
<td></td>
<td>7,0</td>
<td>0,81</td>
<td>12,00</td>
<td>7,72</td>
</tr>
<tr>
<td>Máximo</td>
<td></td>
<td>24,0</td>
<td>5,47</td>
<td>120,25</td>
<td>74,77</td>
</tr>
</tbody>
</table>

* Referido a muestra liofilizada

Tabla 6.- Metales pesados en el cuerpo eviscerado de moluscos. Bahía del Callao. 19 - 20 marzo 2002 Referido a muestra liofilizada

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre Científico</th>
<th>N° Ejs.</th>
<th>Long. Rango (mm)</th>
<th>Cd (ug/g)*</th>
<th>Pb (ug/g)*</th>
<th>Cu (ug/g)*</th>
<th>Zn (ug/g)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almeja</td>
<td>Gari solida</td>
<td>5</td>
<td>48,7-76,0</td>
<td>0,96</td>
<td>n.d</td>
<td>1,96</td>
<td>0,6</td>
</tr>
<tr>
<td>Pique o Señorta</td>
<td>Crepipatella dilatata</td>
<td>24</td>
<td>20,7-40,2</td>
<td>2,04</td>
<td>n.d</td>
<td>14,85</td>
<td>0,9</td>
</tr>
<tr>
<td>Caracol Negro</td>
<td>Thais chocolata</td>
<td>9</td>
<td>51,0-67,0</td>
<td>1,74</td>
<td>0,14</td>
<td>40,94</td>
<td>0,31</td>
</tr>
</tbody>
</table>

* Referido a muestra liofilizada
REFERENCIAS

CONTAMINANTES ORGÁNICOS PERSISTENTES (COP) EN LA ZONA MARINO COSTERA DE CAÑETE, PERÚ. MAYO 2002

PERSISTENT ORGANIC POLLUTANS (POP) FOUND IN THE MARINE COASTAL ZONE OF CAÑETE, PERU. MAY 2002

Rita Cabello Torres Guadalupe Sánchez Rivas
Unidad de Monitoreo y Gestión Marino Costera. DIAGCAC. IMARPE. gsanchez@imarpe.gob.pe

RESUMEN
Cabello R, Sánchez G. 2008. Contaminantes orgánicos persistentes (COP) en la zona marino costera de Cañete, Perú. Mayo 2002. Inf. Inst. Mar Perú 35(1): 43-48.- Como parte del Programa de la Red de Monitoreo Ambiental del IMARPE, se realizó esta primera evaluación sobre la presencia de COP en recursos vivos y en sedimentos orgánicos marinos y dulceacuícolas, en el litoral de Cañete. En este valle se desarrolla una importante actividad agropecuaria, y también pesca artesanal de ribera marina, por ello es muy importante evaluar la presencia de plaguicidas orgánoclorados en el ambiente y biota acuática. La metodología empleada para los análisis químicos e instrumental fue la descrita en el N° 71 de la UNEP/IOC/IAEA/1997. Se presentaron con mayor incidencia los grupos Aroclor 1254, 1260 y los DDT incluyendo sus metabolitos. En los sedimentos de río se halló mayor contenido de Aroclor 1254 (821.02 ng/g), que fue menor en las muestras marinas (7.98 ng/g); estos valores se mantuvieron en los rangos obtenidos en áreas costeras del Perú (19.2 ng/g) evaluadas entre 1994 y 1997, incluyendo los DDT, que no superaron los 2.8 ng/g. En el “camarón de río” Cryptiphs caementarius se detectaron residuos de DDT y su metabólito DDE (5.8 ng/g). En el pez “lisa” Mugil cephalus se halló el grupo Aroclor 1254 con un máximo de 28.96 ng/g; y en el “pez zorro” Menticirrhus rostratus el grupo Aroclor 1260 con 11.81 ng/g; los DDT estuvieron presentes en todas sus formas en cada una de las especies evaluadas. Palabras clave: plaguicidas orgánoclorados, sedimentos marinos, sedimentos fluviales, camarón de río, peces costeros.

INTRODUCCIÓN
El valle del río Cañete, al sur de la Región Lima, tiene actividad agropecuaria muy diversificada con cultivos industriales como el algodón, y cultivos alimenticios como hortalizas, legumbres y frutales. El uso de plaguicidas orgánoclorados fue permitido para plagas de insectos. Las evaluaciones efectuadas por el IMARPE en áreas costeras, ha mostrado su presencia en el medio marino y la zona costera, como consecuencia de su alta persistencia. El río Cañete es uno de los pocos ríos de la costa central y sur con caudal permanente. Durante los últimos meses de primavera y en el verano descarga al mar un importante volumen de agua, pero en otoño e invierno disminuye notablemente. En el verano, estas aguas poseen alto contenido de nutrientes de origen terrígeno y contaminantes, no solo disueltos en las aguas (o lixiviados) sino también adsorbidos en los sedimentos que ingresan al mar. Estas aguas ocasionan baja salinidad o aguas mixohalinas. Desde 1994 el IMARPE realiza el monitoreo del ambiente marino costero en áreas seleccionadas, en cumplimiento del Plan de Acción para la Protección del Medio Marino y Zonas Costeras, que coordina la Comisión Permanente del Pacífico Sur (CPPS). Se han estudiado, con carácter puntual, las bahías de Talara, Paite, Callao, Pisco, mollendo e lte. La influencia de las descargas no puntuales a través de cursos de agua de escorrentía, se refleja en los niveles de contaminantes orgánicos persistentes.
(COP) y restos de plaguicidas. Las áreas con menor concentración han sido Talara y Mollendo. El mayor valor de PCB, se detectó en febrero 1955, en la zona marino costera de Pisco, cuyos sedimentos contenían 79,418 ng/g en Aroclor 1254 (Martínez y Jacinto 1997).

En el presente trabajo se informan los resultados del estudio en la franja marino costera de Cañete, referido a plaguicidas orgánoclorados y policarbonatos (PCB) calificados como indicadores de contaminación de matrices marinas y dulceacuícolas, sedimentos y organismos.

MATERIAL Y MÉTODOS

Colecta de muestras de sedimentos

Por mar.- El sedimento marino superficial se colectó en las estaciones E-8 y E-10 (Figura 1) en las estaciones RC-1 y RC-3. Se utilizó la draga Van Veen de 0,05 m² de área. Con espátulas de acero inoxidable, se tomaron muestras de los tres primeros centímetros, en hojas de papel aluminio se sellaron apropiadamente y se almacenaron en hielo hasta su llegada a laboratorio.

Por río.- Las muestras de sedimentos del río Cañete se tomaron en la ribera, en 2 estaciones (Figura 1), con un corte manual, y envueltas en papel de aluminio, se mantuvieron en cajas térmicas hasta su llegada a laboratorio. El pretratamiento consistió en descongelar parcialmente las muestras, limpiarlas de cuerpos extraños y liofilizarlas por 24 h, triturarlas en mortero para su análisis, siguiendo el método de UNEP/IOC/IAEA N°71 (1997). Después de la liofilización, se procedió a extraer, concentrar y limpiar la muestra de la posible presencia de sulfuros, para luego seguir las fases 1, 2 y 3, según el tipo de residuos por determinar, y por cromatografía gaseosa determinar los residuos de plaguicidas o PCB (Figura 2).

Colecta de material biológico

Ejemplares del pez “lisa” Mugil cephalus, se capturaron en la boca del río Cañete, y el “pez zorro” Menticirrhus elongatus, en el litoral costero de Cochahuasi, playas arenosas de Cañete. También se colectó el “camarón de río” Cryphiops caementarius. Las muestras, envueltas en hojas de aluminio pretratadas, fueron guardadas en hielo; en el laboratorio se congelaron a -20 °C hasta su análisis.

Se separaron 10 machos y siete hembras del camarón de río; la longitud total varió entre 56 y 95 mm; el rango de peso total, incluyendo el caparazón, fue de 1,88 a 8,57 g. Los músculos del abdomen (“colitas”) fueron separados, limpiados y triturados para su liofilización, siguiendo la metodología ya descrita.

Los peces fueron medidos, se identificó sexo y madurez sexual; se separó la masa muscular que fue triturada y liofilizada en el equipo LABCONCO 80250; estas muestras fueron pasadas por mortero, para desagrupar las partículas de los homogenatos, y se almacenaron en frascos pequeños cubiertos con tapas de teflón, hasta su posterior análisis, siguiendo el método de la UNEP/FAO/IOC/AEA N° 14-1986 (Figura 3).

Análisis químico e instrumental

Principales equipos y materiales de laboratorio utilizados para el análisis de los COP.

- Cromatógrafo de Gases Hewlett Packard 5890 Serie II con software Chem-Station versión 4 incorporado para su manejo instrumental.
- Columna capilar de 25m x 0,2 mm x 0,11 um de espesor HP.
- Detector de captura electrónica (ECD).
- Equipo liofilizador LABCONCO 80250.
- Rotavapor Buche con sistema de presión al vacío.
- Sistema Kudema Danish.
- Sistema Soxleth.
- Mercurio o cobre activado.
- Hexano p.a.r.
- Diclorometano p.a.r.
- Gas Nitrógeno UHP.
- Gas Helio UHP.
- Microgeringas de 10 uL.

Características de los plaguicidas y PCB, su presencia en cuerpos de agua

El DDT (DicloroDifenilTricloroetano) es una molécula insoluble en agua, potente insecticida que fue muy empleado a comienzo de los
El hexaclorobenceno (HCB o BHC) también es insecticida y un fungicida que se usaba principalmente para evitar la presencia de hongos en los cultivos de trigo. Constituye el activo de conservantes para la madera y como plastificante.

El HCB ingresa al medio ambiente por combustión de desechos (aquéllos que contienen cloro), por lixiviación de suelos. En el agua se absorbe muy bien en las partículas en suspensión y así se acumula en los sedimentos. Como resultado de procesos metabólicos se acumula en el tejido adiposo de los organismos.

Los Bifenilos Policlorinados (PCB) son sustancias con fórmula general $C_{12}H_{10-n}Cl_{n}$. Fueron creados en laboratorio de manera que su hallazgo en distintas matrices ambientales no es natural. Debido a su estabilidad térmica, química, biológica y elevada constante diélectrica se emplean como material aislante de equipos eléctricos en transformadores, capacitores y termostatos. También pueden ser producidas por la quema de desechos orgánicos de pesadas mixturas moleculares organocloradas.

Sin embargo, existen PCB capaces de biodegradarse, lo cual depende del número de átomos de cloro presentes de su estructura. De otro lado, la toxicidad es una función de la configuración estructural de la molécula pues solo aquellos PCB con átomos de cloro en posiciones coplanares son de alta toxicidad, a estos corresponden los de grupo Aroclor 1254 y 1260. En general se detectaron compuestos PCB del grupo Aroclor 1254 y 1260 y DDT en la forma de pp’ DDT y pp’ DDE (Tabla 2). En sedimentos marinos y fluviales, estos últimos presentaron mayores contenidos en los analitos evaluados.

El Lindano (gamma-hexaclorociclohexano, r-HCH) es un organoclorado que presenta alta solubilidad en agua, se aplicó como insecticida especialmente en los cultivos de caña de azúcar. En condiciones aeróbicas, el lindano puede permanecer por muchos años en el ambiente sin sufrir degradación.

Tabla 1.- Plaguicidas utilizados en diferentes cultivos del valle de Cañete

<table>
<thead>
<tr>
<th>Cultivos</th>
<th>Plaguicidas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOCETEO</td>
<td>- Clorpirifós (insecticida), Atabron (insecticida), Diclorfós (insecticida), Rovral (fungicida), Sanmite (coadyuvante).</td>
</tr>
<tr>
<td>CAÑA DE AZÚCAR</td>
<td>- Terbutulina, Atrezina (herbicida), Glyphosate, Adherente (coadyuvante), 2, 4-D (herbicida)</td>
</tr>
<tr>
<td>ESPERROJO</td>
<td>- Folicur, Metasystox (insecticida), Adherente (coadyuvante), 2, 4-D (herbicida)</td>
</tr>
<tr>
<td>MANZANILLA</td>
<td>- Cercon-M (fungicida), Tiritormon (insecticida), Aceite Agrícola (insecticida), Adherente (coadyuvante)</td>
</tr>
<tr>
<td>MAÍZ AMARILLO DURO</td>
<td>- Clorpirifós (insecticida), Adherente (coadyuvante).</td>
</tr>
</tbody>
</table>

Figura 2.- Flujo Análitico sobre la determinación de COP’s en sedimentos de mar.

Consumo de plaguicidas en la actividad agrícola del valle de Cañete

Los plaguicidas son insumos necesarios, donde se manifiesta principalmente la interrelación agro - áreas sembradas - tipo de cultivo. En la provincia de Cañete existen unas 389,62 ha cosechadas por campaña, divididas entre un...
total de 13,555 unidades agropecuarias (Tabla 1), que sustentan una apreciable demanda de diversos plaguicidas, entre los cuales se encuentran los restringidos y también los prohibidos (VILLEGAS y Sánchez 2003). En la Figura 4, se aprecia una zona de cultivos de tallo corto, donde la aplicación de los plaguicidas no siempre guarda las normas de seguridad en el uso de estos compuestos tóxicos, poniendo en riesgo la salud humana.

Según el Centro de Asistencia en Proyectos y Estudios Rurales (2002), en Cañete se utilizan varios tipos de plaguicidas, lo cual, considerando la sinergia que se manifiesta entre algunos de ellos, ejerce mayor toxicidad sobre las plagas, pero compromete la flora y fauna y el medioambiente en general. Sin duda, el uso continuo y desmedido de estos organoclorados lleva a la eliminación de especies benéficas (parasitoides y predadores) y a la resistencia de la especie-plaga, que en poco tiempo resulta casi incontrolable y afecta enormemente la economía agrícola.

Plaguicidas organoclorados en sedimentos del lecho fluvial y marino

Bifenilos Policlorinados (PCB)

Aroclor 1254.- Es un grupo que, generalmente, ha sido detectado con mayor incidencia en las diferentes áreas evaluadas.

En la desembocadura del río Cañete (estación RC-1) de 21,02 ng/g (Figura 5a y Tabla 2), se ha mantenido dentro del rango obtenido en las diversas evaluaciones efectuadas, cuya amplitud va desde 7,0 ng/g (rio Tambo, Arequipa agosto 1996) a 38,983 ng/g (rio Tumbes, octubre 1997 (IMARPE, Base de datos de plaguicidas 1996-1997).

Tablas:

Tabla 2.- Concentración de Plaguicidas Organoclorados y PCB's en sedimentos en la zona marino costera de Cañete, mayo 2002

<table>
<thead>
<tr>
<th>Estación</th>
<th>Coordenadas Geográficas</th>
<th>AROCLOR 124</th>
<th>AROCLOR 1254</th>
<th>HCH (m)</th>
<th>HCH (l)</th>
<th>HCB</th>
<th>p,p'-DDE</th>
<th>p,p'-DDD</th>
<th>p,p'-DDT</th>
<th>p,p'-DDE'</th>
</tr>
</thead>
</table>
| RC-1 (Rí)
13°25'18.8''
76°24'30.1'' | 21,02 7,00 2,38 2,79 2,79 |
| RC-2 (Rí)
13°37'22.1''
76°20'36.5''
13°37'46.7'' | nd nd 1,50 0,33 0,34 0,57 |
| E-4 (Mar)
76°25'08.5''
13°06'22.7'' | nd nd nd 0,21 nd 0,21 |
| E-10 (Mar)
76°23'56.0'' | 7,98 0,80 nd nd 0,84 0,56 <1,6 0,04 <1,6 0,94 |

Figura 3.- Flujogramo analítico sobre la determinación de COP's en organismos de mar.

Figura 4.- Aplicación de plaguicidas por "mochileros".

Informe IMARPE Vol. 35 (1). Enero - Marzo 2008
Los sedimentos de mar (estación E-10, frente a la desembocadura del río Cañete) presentaron 7,98 ng/g (Figura 5a y Tabla 2), un valor similar a los hallados en Mo-llendo y Callao (0,46 a 12,02 ng/g) en 1996, pero inferiores a los de Pisco, Tumbes y Piura, Tumbes y Piura (38,93 ng/g en 1995, y 79,42 ng/g en 1997 (Martínez y Jacinto 1997, Jacinto y Cabello 1998).

Aroclor 1260.- Este grupo, en sedimentos marinos, generalmente se ha presentado en menores proporciones que el grupo anterior. Su presencia no es peligrosa, pues es resistente a la degradación química (u oxidación) por hidrólisis. Se han detectado valores entre 0,663 (Pisco febrero 1995) a 9,94 ng/g (Callao, diciembre 1994).

En Cañete, en la estación marina E-10 se registró 0,60 ng/g, y en la estación fluvial RC-1 se obtuvo 7,0 ng/g.

Hidrocarburos clorinados

DDT y sus metabolitos.- En la Tabla 2 y la Figura 5a, se puede observar una mayor presencia del metabolito DDE, el cual fue hallado en todas las estaciones evaluadas. Esto refleja una situación degradativa del DDT expuesto en el medio ambiente, ante un proceso hidrolítico y de acción biológica de organismos que habitan dicha zona. Los niveles hallados en sedimento marino (0,21 en E-8) y en sedimento fluvial (2,8 ng/g en RC-1) no superaron el rango existente de 0,1 a 16,89 ng/g hallado en el sedimento marino del Callao en diciembre de 1994. El DDT presentó un valor máximo de 0,25 ng/g en mar (E-8) pero no cuantificado (~0,1 ng/g).

Hexaclorobenceno (HCB).- Este analito ha sido hallado en sedimento de río (RC-3) con 1,57 ng/g (Figura 5a), que ha superado lo cuantificado en Tumbes (0,188 ng/g) y en Piura (0,341 ng) en octubre de 1997 (Jacinto y Cabello 1998).

Lindano.- Fue registrado en sedimentos de río (1,5 ng/g) y superó el valor máximo de los sedimentos marinos (Tabla 2 y Figura 5a) en el Callao (0,34 ng/g, marzo 2005). Es importante señalar que la muestra fue colectada en cuenca baja del río Cañete, donde existe una intensa y diversa actividad agrícola (Figura 4), a 6,4 km de la desembocadura del río.

Niveles de plaguicidas y PCB en organismos

(Ar) y (b) (Figura 5b). Los DDT han estado presentes en todas sus formas en las especies evaluadas (Tabla 2).

Bifenilos Policlorinados (PCB)

El IMARPE, en 1995 y 1997, inició la evaluación de las concentraciones presentes del grupo Aroclor 1254 en organismos marinos y dulceacuícolas de la costa peruana.

En octubre 1997, en Tumbes, se halló 2,5 ng/g en ayuquín o cachema, Cynoscion stolzmanni; y 85,67 ng/g en lisa, Mugil cephalus. En la presente evaluación, en músculo de lisa se registró 28,96 ng/g, y en el pez zorro, Menticirrhus rostratus, 16,33 ng/g, reflejando la presencia de este PCB en el sedimento de río de zona de descarga y de lecho marino frente a esta zona (Tabla 4 y Figura 5b).
Es importante señalar que, según la información recopilada en la base de datos de plaguicidas organoclorados 1994–1997, entre los peces analizados, la lisa ha presentado las mayores concentraciones. Esta situación se debe al tipo de comportamiento de esta especie costera, cuyo hábitat es la zona de descarga de ríos y escorrentías agrícolas, que arrastran al mar mucho material terricola desde los campos de cultivo; y, además, es omnívora, cuya dieta incluye material particulado de diverso tipo procedente de áreas donde se aplican los plaguicidas.

En la Tabla 4 se presentan las concentraciones de Aroclor 1260, observándose que la mayor concentración se obtuvo en pez zorro (12,0 ng/g) que superó el valor de 4,51 ng/g al obtenido en lisa del río Tumbes en octubre de 1997.

Igualmente se determinó residuos de DDT y metabolitos en el pez zorro, con mayor contenido de estos analitos (-DDTs), hasta un total de 10,15 ng/g. La lisa mostró un menor contenido de DDT (1,97 ng/g) a diferencia de lo reportado en el río Tumbes, para esta misma especie de 5,1 ng/g en –DDTs en octubre de 1997, pero muy similar a la concentración de 2,15 ng/g obtenida para ejemplares de pez zorro en Pisco en febrero de 1995.

El camarón de río presentó niveles similares a los de otros invertebrados (Tabla 3 y Figura 5b), como: el caracol turbante Tegula atria, en el Callao; el chorro Aulocomya ater, en Ite y el chorito Seminymitus algosus, en Pisco, los cuales presentaron un rango de 0,3464 a 7,8 ng/g entre 1995 a 1996 (Fuente: Base de datos de Monitoreo Ambiental 1994-1997).

CONCLUSIONES
1. Contaminantes orgánicos persistentes como grupos de PCB: Aroclor 1254, Aroclor 1260 y DDT’s (DDT y metabolitos) han sido detectados con mayor frecuencia en sedimentos de fondo blando, así como en organismos marinos y dulceacuícolas.
2. Los mayores contenidos se han cuantificado en aguas continentales siendo los organismos que tiene este tipo de hábitat, los mejores indicadores por sus características metabólicas, en cuyo proceso se da la bioacumulación en tejidos y órganos principalmente adiposos.

RECOMENDACIONES
1. Es importante continuar con las evaluaciones de plaguicidas organoclorados y PCB’s en muchas áreas de la costa peruana, por el incremento de cultivos agroindustriales, donde hay un importante empleo de estos compuestos agroquímicos.
2. Deberá reforzarse las evaluaciones en peces e invertebrados que habitan en el litoral costero, muchas de las cuales presentan un comportamiento alimentario que facilita la ingestión de este tipo de contaminante, en especial, las que se distribuyen en zonas de descargas de ríos y escorrentías agrícolas. Es el caso de Cañete, donde existe una significativa actividad de pesca artesanal de ribera, que captura este tipo de recursos.

REFERENCIAS
INTRODUCCIÓN
La bahía de Huarmey es un área costera semicerrada, pequeña; la superficie evaluada estuvo comprendida entre 10°04’ – 10°5,9’S, hasta una distancia aproximada de 1,2 mn de la costa (Figura 1). En el área costera de la provincia de Huarmey existe actividad minera, pesquería industrial (dos plantas harineras), pesca artesanal y en menor escala la actividad agrícola.

La actividad minera se relaciona con el transporte y la infraestructura portuaria para almacenamiento de concentrados de cobre y zinc, transportados a través de un minero de 302 km, desde la planta concentradora en San Marcos (Huari) hasta el puerto de Punta Lobitos en Huarmey. En el muelle de la compañía Antamina, una faja transportadora lleva los concentrados a las diversas embarcaciones que acodan a la bahía. Todo esto dio lugar a serias preocupaciones y conflictos por las implicancias ambientales sobre el entorno marino costero y la pesca artesanal.

El IMARPE ha desempeñado un papel importante desde que se tomó conocimiento del proyecto minero; antes de la presente prospección en el 2002, se efectuaron tres evaluaciones: en mayo y diciembre 2000, y octubre 2001. Existe así, un estudio de línea...
base, desde antes que se iniciaran las operaciones de transporte de minerales. Nuestros resultados de monitoreo contribuyen con la Comisión Técnica Multisectorial (CTM), creada mediante RM N° 149-2001-PCM, en la gestión de carácter integral destinada a la solución de las implicancias ambientales y problemas sociales relacionados con dicha actividad, en el área marino costera de Huarmey.

La presente evaluación tuvo como finalidad continuar el monitoreo de las variables hidrográficas y de calidad acuática, además de determinar el contenido metálico en sedimentos y organismos del área costera de Huarmey.

MATERIALES Y MÉTODOS

Muestreo

La carta de posiciones de las estaciones en playa y mar se presenta en la Figura 1.

La prospección por playas se realizó el 12 de marzo, desde el río Huarmey hacia el sur de la bahía, cerca a Punta Lobitos. En su mayoría la línea costera presentó playas limpias, de tipos rocosas y arenosas.

El muestreo por mar se efectuó el 13 de marzo, a bordo de una embarcación con motor fuera de borda de 7 m de eslora. Abarcó el área entre 10°04' y 10°06'S. Se fijaron 10 estaciones para obtener muestras de agua, sedimentos y organismos.

En la desembocadura del río Huarmey, frente a la estación 3 (10°05'S, 78°10'W), la mezcla de aguas se extendió hacia el interior de la bahía cerca de la estación 6 (10°05'S, 78°10'W) en las proximidades del Puerto Huarmey.

Las estaciones 1 y 2, alejadas a la línea costera, presentaron en superficie burbujas de aire que reflejaron intensos procesos fotosintéticos en el área circundante. Es importante destacar que, en las inmediaciones del muelle de descarga del mineroducto, se percibió un sabor metálico indicando la presencia de elementos traza en el ambiente.

Métodos

La ubicación de estaciones se efectuó con un posicionador global GPS. La colecta de agua se realizó en superficie y fondo, con la ayuda de un balde y botella Niskin de 2,5 L de capacidad con portatermostro. Los registros de temperatura se efectuaron con termómetros de superficie y de inversión.

La toma de muestras de sedimentos se realizó en 9 estaciones
con la ayuda de una draga Van Veen de 0,05 m²; a profundidades que variaron entre 5,0 a 25,0 m.

La colecta de organismos se realizó por buceo. Las cinco especies de moluscos bentónicos y las estaciones donde fueron colectados, se presentan en la Figura 15. Se obtuvo un número representativo de ejemplares, se lavaron con agua de mar a fin de eliminar restos de sedimentos, se identificaron, se codificaron y se mantuvieron en congelación hasta su estudio en el laboratorio.

Las determinaciones físico-químicas para evaluar la calidad acuática se basaron en los métodos seguidos por el IMARPE.

La metodología destinada al tratamiento y análisis químicos, para la determinación de metales en sedimentos y organismos comprendió las siguientes fases:

Selección de muestras.- Se seleccionó entre 10 y 25 ejemplares, que fueron disectados, a fin de separar la parte muscular y preparar una muestra homogénea (homogenato) previa al proceso de secado. La excepción fue el chorito, Semimytilus algosus, el cual por su tamaño, contó con más individuos y fue analizado en su totalidad, incluyendo las vísceras.

Proceso de secado o liofilización.- Previo al tratamiento químico, tanto las muestras de sedimento como los homogenatos, fueron liofilizadas (secado en frío) con un liofilizador Labconco. Al sedimento liofilizado se le tamizó haciéndolo pasar por una malla Nytal de 149 micras; conforme a la clasificación de la ASTM 1966, los gránulos de sedimentos estuvieron conformados por arena fina, muy fina, limo y arcilla.

Tratamiento químico.- Las muestras de sedimentos y organismos liofilizados fueron sometidas a un tratamiento de digestión ácida, por sistema microondas MSP-1000, conforme a método CEM USA, 1994.

Para lecturas analíticas de cobre, cadmio, plomo y zinc se utilizó el espectrofotómetro de Absorción Atómica Modelo 6701 F – Shimadzu, con sistema automatizado de horno de grafito y llama.

RESULTADOS Y DISCUSIÓN

EVALUACIÓN POR MAR

Parámetros hidrográficos

Los resultados se presentan en las Tablas 1 y 2.

Temperatura (°C).- La TSM varió de 16,2 °C (Estación 6), a 22,1 °C (Estaciones 2 y 4). Las temperaturas disminuyeron desde el interior de la bahía hacia el oeste; una isolínea de 22,5 °C dominó en el área evaluada reflejando el promedio obtenido (Figura 2a). En el nivel próximo al fondo, se presentó una tendencia decreciente (Figura 2b) hacia el interior de la bahía similar a la producida en su-
perímetro. Los valores variaron entre 22,0 °C (Estaciones 6 y 9) a 20,5 °C (Estación 10). Una isolínea de 21,5 °C dominó en la bahía (promedio: 21.41 °C).

Salinidad (ups).- La salinidad superficial del mar (SSM) presentó valores de 26,869 ups (Estación 6) a 35,057 ups (Estación 9), promedio de 33,340; cerca al fondo el registro mínimo fue 34,699 ups (Estación 6), el máximo, 34,948 ups (Estación 9), el promedio de 34,860 ups.

En superficie y fondo, se determinaron características de Aguas Costeras Frías (ACF). A nivel superficial, por la descarga estacional del río Huarmey, se produjo una mezcla de aguas desde la desembocadura hacia el interior de la bahía, que formó un núcleo de 27,000 ups frente al puerto (Figura 3a), con una tendencia creciente de valores hacia el oeste. En el fondo, la concentración de salinidad presentó mayor estabilidad, con similar distribución a la superficial (Figura 3b).

Oxígeno disuelto.- En general, los valores superaron las condiciones mínimas de la Ley General de Aguas vigente (>2,1 mL/L, equivalente a >3,0 mg/L, Reglamento 1970). El rango fluctuó entre 2,7 mL/L (fondo, estación 10 fuera de la bahía, promedio 4,41) y 6,73 mL/L (superficie, estación 9 en el interior de la bahía, promedio 5,27). En ambos niveles se observó una tendencia creciente hacia el interior de la bahía (Figuras 4a, 4b).

Potencial de iones hidronio (pH).- El rango fue 7,79 – 8,17, ajustado a los requisitos de calidad acuática (6,5 a 8,0) de la Clase IV de la Ley de Aguas. Los valores >7,8 suelen encontrarse en aguas costeras que no presentan problemas significativos de carga orgánica biodegradable asociados a concentraciones de oxígeno estipuladas en la Ley. El pH presenta una tendencia de distribución similar a lo observado en el oxígeno, especialmente a nivel de fondo; pH presentó valores crecientes hacia el interior de la bahía con isolínea dominante de pH 8 (Figuras 5a, 5b).

Sulfuros.- El bajo contenido de sulfuro de hidrógeno (<1,0 ug-at H₂S/L) respondió a la presencia no significativa de carga orgánica en el medio, asociada a discretas concentraciones de SST (<35,0 mg/L) que no ejercen mayor intensidad en los procesos de óxido reducción y, por ende, en la formación de gas sulfhídrico. Su distribución (Figuras 6a, 6b) especialmente en superficie, mostró el predominio de una isolínea de 0,60 ug-at H₂S/S/L en el área de interés.

Sólidos suspendidos totales (SST).- Las concentraciones dominantes fueron 15 mg/L en superficie, y de 25 mg/L en el fondo (Figuras 7a, 7b). Estos valores se pueden considerar directos (<35,0 mg/L) y corresponden a los que normalmente se detectan en nuestra franja costera hasta unas tres millas náuticas, especialmente en zonas de poca influencia humana, como Samanco (marzo 1996) e inclusive en Chancay (setiembre 1999) durante el periodo de veda pesquera (LMA, 2002).

Las Figuras 8 y 9 muestran condiciones de calidad aceptables en el área evaluada. El contenido de oxígeno disuelto se asocia a las temperaturas del agua marina (20,5 a 23,7 °C), pues las tendencias de ambas variables son similares entre superficie y fondo. Esta asociación se afecta cuando se introduce al medio un factor externo,
como las aguas residuales con elevada carga orgánica, especialmente originada por el hombre.

Es usual determinar este tipo de diagrama en áreas costeras sin carga orgánica biodegradable de gran significación, con bajo contenido de grasas, sólidos suspendidos (<35 mg/L) que no producen valores de sulfuros >1,0 ug-at H2S-S/L. El pH muestra una tendencia casi lineal y estable, lo cual indica características propias del medio, es decir, las reacciones de óxido reducción no son significativas para establecer un cambio sustancial en la alcalinidad del medio marino por factores antrópicos.

Demanda bioquímica del oxígeno (DBO₅). Los valores de DBO₅ en superficie tuvieron un rango de 1,32 (estación 6) a 4,65 mg/L (estación 10) (Figura 10); los valores estuvieron por debajo de los límites establecidos en la Ley General de Aguas (10 mg/L).

Indicadores de contaminación fecal. Por mar, los coliformes termotolerantes variaron de <30 a 4,3 x 10² NMP/100 mL (Figura 11). Los mayores valores (estaciones 3 y 6) sobrepasaron los estándares de calidad acuática fijados por la LGA para la clase V: Aguas de Preservación de Fauna Acuática.

Metales pesados

En sedimentos marinos

Los resultados de estos análisis se presentan en la Tabla 3.

Cadmio. Varió de 0,40 µg/g (mínimo, estación 3) a 3,89 µg/g (máximo, estación 10), promedio de 1,81 µg/g; se observó ligero incremento en el promedio comparado con diciembre 2000 (1,51 µg/g) y octubre 2001 (1,66 µg/g). Estos valores se pueden considerar dentro del rango característico de esta bahía. El máximo en la estación 10 fue algo menor que en la evaluación anterior (4,5 µg/g). En la figura 12a, se observa la predominancia de una isolínea de 1,0 µg/g al centro de la bahía con una tendencia creciente hacia el sur, igual que en la pasada evaluación.

Plomo. Sus concentraciones variaron de 5,65 (estación 2) a 9,88 µg/g (a 8 m profundidad, estación 6), promedio 8,03 µg/g, similar a diciembre 2000 (8,2 µg/g). JACINTO et al. 2001 En la Figura 12b se puede observar que hubo predominio de una isolínea de 8,0 µg/g, la cual tiende a disminuir al alejarse de la línea costera. Estos registros son diferentes a diciembre 2000 y octubre 2001 (JACINTO 2001).

Cobre. Este metal ha experimentado un alto incremento sobre el promedio anterior (20 µg/g). Varió de 20,45 µg/g (estación 2) hasta 63,01 µg/g (estación 10), promedio 35,22 µg/g. Esto fue más notable en la estación ubicada al sur del muelle Antamina donde se realizan las operaciones de descarga del concentrado de cobre. En la figura 12c, las isolíneas predominantes de 30 a 40 µg/g al centro de la bahía, mostraron una tendencia creciente hacia el sur, similar a lo observado en la última prospección.

Zinc. Los valores variaron de 8,34 (estación 3) a 29,29 µg/g (estación 10), promedio 18,47 µg/g, similar al registro de octubre 2001 (18,02 µg/g). En la figura 12d, se
observa el predominio de una isólinea de 20,0 µg/g en la bahía, con una tendencia creciente hacia el sur al igual que lo observado en octubre 2001.

En el presente estudio, la estación 10, ubicada al sur, presentó las mayores registros de cobre, zinc y cadmio. Existen dos fuentes de aporte significativo de elementos metálicos, especialmente cobre y zinc, al medio marino: (1) el minerooducto ubicado en el muelle de Antamina, donde se realizan las operaciones de embarque del concentrado, durante las cuales ocurren pérdidas de los concentrados; (2) las descargas terrígenas del río Huarmey, cuyo alto caudal durante esta evaluación, produjo una mezcla que se extendió hacia el sur, hasta las proximidades del puerto Huarmey, y al interior de la bahía.

Con excepción del plomo, los demás elementos mostraron tendencias similares en la distribución, lo cual estaría relacionado con las diferentes fracciones de los sedimentos los cuales tienen diferente movilidad en el ambiente marino; de allí que su distribución varía con los diferentes elementos (Krumgalz et al. 1992). En general, los elementos metálicos mantienen una distribución creciente hacia el sur, comportamiento que estaría condicionado además por la presencia de una contracorriente subsuperficial hacia el sur de la bahía (Jacinto et al. 2001).

En organismos marinos

En la Tabla 4, se presentan los resultados del contenido metálico en la parte muscular de los diversos organismos bentónicos examinados. En el chorito (Semimytilus algosus) se analizó el cuerpo con vísceras. En la Figura 13, se reúnen los datos de los cuatro metales hallados en los cinco moluscos analizados, que fueron colectados en tres estaciones (E-1, E-4, E-9).

Cadmio.- En general, el valor promedio en los moluscos evaluados en el área de Huarmey (Figura 13) fue de 1,71 µg/g; en el chorito alcanzó 2,12 µg/g.

La lapa, Fissurella latimarginata (Figura 14) mostró un contenido bajo, bastante homogéneo en las

<table>
<thead>
<tr>
<th>Estación</th>
<th>Latiitud S</th>
<th>Longitud W</th>
<th>Profundidad</th>
<th>Temperatura</th>
<th>Salinidad</th>
<th>Transparencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10°04.000′ 78°10.310′</td>
<td>0 22.2 34.507 4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 10°04.521′ 78°10.710′</td>
<td>20 21.0 34.878 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 10°04.859′ 78°10.238′</td>
<td>0 23.2 28.746 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 10°05.379′ 78°10.511′</td>
<td>5 21.9 34.841 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 10°05.347′ 78°10.420′</td>
<td>20 21.0 34.821 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 10°05.099′ 78°10.243′</td>
<td>0 23.7 26.869 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 10°05.891′ 78°10.983′</td>
<td>25 20.7 34.924 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 10°05.353′ 78°10.345′</td>
<td>13 21.5 34.907 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 10°05.415′ 78°10.335′</td>
<td>0 22.4 34.955 4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 10°05.976′ 78°11.003′</td>
<td>20 20.5 34.947 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERFICIE</td>
<td>Min. 22.10 26.869 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. 23.70 35.057 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prom. 22.54 33.338 4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FONDO</td>
<td>Min. 20.50 34.699 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. 22.00 34.948 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prom. 21.41 34.859 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
tres estaciones, que fue algo mayor que en octubre 2001 (0,90 µg/g) (Jacinto 2001).

Los dos gastrópodos evaluados: caracol negro, Thais chocolata, y caracol turbante, Tegula atra (Figura 15) mostraron concentraciones bajas y ligeramente diferentes. Fueron algo mayores que en octubre 2001 (0,90 µg/g) (Jacinto 2001).

El chitón (Acanthopleura echinata) colectado en las proximidades de la isla Corcovado (E-4) presentó la menor concentración, similar al año 2001. El chorito presentó el mayor contenido de cadmio y algo mayor que en la última evaluación (1,2 µg/g).

Esta especie superó ligeramente el límite máximo permisible de 2,0 µg/g de la FAO (1983) y del Departamento de Salud de Australia (1983).

Con excepción del chorito, las concentraciones de cadmio se pueden considerar bajas.

Plomo.- En las especies estudiadas (Figura 15), fue <1,0 µg/g, promedio 0,29 µg/g; valores menores que los anteriores y que las normas internacionales de FAO (1983) y FDA (1983).

En la lapa varió de 0,08 µg/g (E-9) a 0,43 µg/g (E-1), promedio 0,26 µg/g.

En los caracoles se registró plomo en la misma concentración (0,19 µg/g), y la variación fue similar a los de lapa.

El chitón (estación 4) con una concentración de 0,16 µg/g, también presentó una disminución con respecto al 2001 (0,61 µg/g).

El chorito (E-9, zona intermareal frente a Isla Blanca) presentó un máximo de 0,55 µg/g, inferior al del 2001 (1,5 µg/g).

Cobre.- El contenido de cobre en las diferentes especies estudiadas en la bahía de Huarmey (Figura 15) fue inferior a los límites internacionales; varió de 5,25 µg/g (chitón, estación 4) a 28,53 µg/g (caracol negro, estación 4). Las concentraciones experimentaron una reducción para las especies lapa y chitón, pero un incremento en el chorito.

La lapa, con 7,76 µg/g (estación...

<table>
<thead>
<tr>
<th>Estación</th>
<th>Nombre común</th>
<th>Nombre Científico</th>
<th>Organo analizado</th>
<th>Longitud mm</th>
<th>N° indiv.</th>
<th>Cadmio ug/g *</th>
<th>Plomo ug/g *</th>
<th>Cobre ug/g *</th>
<th>Zinc ug/g *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lapa</td>
<td>Fissurella latimarginata</td>
<td>Cuerpo eviscerado</td>
<td>44,4 - 58,4</td>
<td>21</td>
<td>1,64</td>
<td>0,43</td>
<td>7,76</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>4 Lapa</td>
<td>Fissurella latimarginata</td>
<td>Cuerpo eviscerado</td>
<td>36,0 - 44,5</td>
<td>21</td>
<td>1,77</td>
<td>0,27</td>
<td>9,39</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>9 Lapa</td>
<td>Fissurella latimarginata</td>
<td>Cuerpo eviscerado</td>
<td>54,2 - 67,6</td>
<td>10</td>
<td>1,53</td>
<td>0,08</td>
<td>15,96</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>1 Caracol negro</td>
<td>Thais chocolata</td>
<td>Cuerpo eviscerado</td>
<td>41,1 - 63,5</td>
<td>10</td>
<td>1,64</td>
<td>0,41</td>
<td>22,77</td>
<td>1,16</td>
<td></td>
</tr>
<tr>
<td>4 Chitón</td>
<td>Acanthopleura echinata</td>
<td>Cuerpo eviscerado</td>
<td>24,5 - 31,9</td>
<td>19</td>
<td>1,48</td>
<td>0,16</td>
<td>5,25</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>1 Caracol turbante</td>
<td>Tegula atra</td>
<td>Cuerpo eviscerado</td>
<td>25,3 - 32,7</td>
<td>25</td>
<td>1,86</td>
<td>0,19</td>
<td>12,31</td>
<td>4,04</td>
<td></td>
</tr>
<tr>
<td>4 Caracol negro</td>
<td>Thais chocolata</td>
<td>Cuerpo eviscerado</td>
<td>41,6 - 55,5</td>
<td>25</td>
<td>1,61</td>
<td>0,19</td>
<td>28,53</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>9 Chorito</td>
<td>Semimytilus algosus</td>
<td>Cuerpo con visceras</td>
<td>24,0 - 38,0</td>
<td>80</td>
<td>2,12</td>
<td>0,55</td>
<td>6,78</td>
<td>0,10</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.- Resultados Analíticos de la Cuantificación de las Variables de Calidad Acuática.

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud W</th>
<th>Latitud S</th>
<th>Oxígeno Disuelto (mL/L)</th>
<th>pH</th>
<th>SST (mg/L)</th>
<th>Sulfuro (ug-at H2S-S/L)</th>
<th>Aceites y Grasas (mg/L)</th>
<th>Observaciones Complementarias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Huarmey “A”</td>
<td>78°09,677’</td>
<td>10°04,488’</td>
<td>2,56</td>
<td>8,73</td>
<td>22,26</td>
<td>0,25</td>
<td>3,00</td>
<td>Rio cargado, ganado pasteando en los sembríos adyacentes. Hora: 17:37 p.m.</td>
</tr>
<tr>
<td>Desembo cadura de Río Huarmey “B”</td>
<td>78°10,059’</td>
<td>10°05,358’</td>
<td>3,25</td>
<td>8,15</td>
<td>25,12</td>
<td>0,56</td>
<td>-</td>
<td>Rio en plena descarga. Restos de madera, el curso de agua se divide en dos tramos finales. A 200m se encuentra una chata bombeando pescado hacia la planta. Hora: 18:00 p.m.</td>
</tr>
<tr>
<td>Puerto Huarmey “D”</td>
<td>78°10,302’</td>
<td>10°05,315’</td>
<td>4,50</td>
<td>7,68</td>
<td>23,20</td>
<td>0,40</td>
<td>2,60</td>
<td>Agua adyacentes al muelle de color verde esmeralda, fuerte sabor metálico en el paladar. Hora: 17:05 p.m.</td>
</tr>
<tr>
<td>Playa de Huarmey “E”</td>
<td>78°10,059’</td>
<td>10°05,358’</td>
<td>3,21</td>
<td>7,82</td>
<td>13,95</td>
<td>0,25</td>
<td>-</td>
<td>Agua limpia, playa limpia y arenosa. Hora: 19:05 p.m.</td>
</tr>
</tbody>
</table>

SUPERFICIE

<table>
<thead>
<tr>
<th>Minimo</th>
<th>Máximo</th>
<th>Prom,</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,56</td>
<td>4,50</td>
<td>3,38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimo</th>
<th>Máximo</th>
<th>Prom,</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,68</td>
<td>8,73</td>
<td>8,23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimo</th>
<th>Máximo</th>
<th>Prom,</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,95</td>
<td>23,20</td>
<td>18,68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimo</th>
<th>Máximo</th>
<th>Prom,</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>0,56</td>
<td>0,37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimo</th>
<th>Máximo</th>
<th>Prom,</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,60</td>
<td>3,00</td>
<td>2,80</td>
</tr>
</tbody>
</table>
1) a 15,96 µg/g (estación 9) promedio 11,04 µg/g; disminuyó con relación a octubre 2001 (14,10 µg/g).

En los caracoles se hallaron las máximas concentraciones de este elemento: 12,31 µg/g (estación 1), 28,53 µg/g (estación 4) promedio 21,20 µg/g; igual que el promedio hallado en octubre 2001 (21,0 µg/g).

En el chitón el valor (5,25 µg/g) fue muy inferior a registrado para esta especie en octubre 2001 (25,3 µg/g), en la misma estación (isla Corcovado).

En el chorito (estación 9) la concentración de 6,78 µg/g, fue ligeramente superior a lo registrado en la pasada evaluación. El caracol es la especie que presentó el mayor contenido; los valores variaron de 0,10 µg/g (chorito, estación 9) a 4,04 µg/g (caracol, estación 1), con un promedio de 1,10 µg/g para las diversas especies.

La especie lapa es la que presentó el menor contenido de zinc, con un valor promedio de 0,22 µg/g. Se observa una reducción significativa del contenido de este elemento con respecto a la última evaluación (5,9 µg/g).

El caracol es la especie que presentó el mayor contenido; los valores variaron de 1,16 µg/g (caracol negro, estación 1) a 4,04 µg/g (caracol turbante, estación 1) con un promedio de 2,19 µg/g. Concentración ligeramente inferior a lo registrado en la pasada evaluación.

Tanto el chitón (1,45 µg/g) como el chorito (0,10 µg/g) mostraron niveles muy bajos comparado a la evaluación de octubre 2001, que fue de 4,1 µg/g y 2,8 µg/g respectivamente.

Se observó una marcada variación en la concentración de los diversos elementos metálicos en los moluscos bentónicos evaluados. La presente evaluación 2002 corresponde a la estación de verano, con TSM altas (21 °C, promedio) y óptimo contenido de oxígeno disuelto (4-5 mL/L) en contraste con los periodos de diciembre 2000 y octubre 2001 (LMA, 2001) cuyos valores fueron menores en la misma área. Es decir, fueron características ambientales que han condicionado los estados fisiológicos de las diversas especies.

Las proximidades de Punta Boquerón (E 1) se caracteriza por ser una zona de gran energía, rodeada de isletos con una abundante comunidad biológica intermareal, favorecidas por la mayor cantidad de material biogénico en suspensión.

Diversos autores refieren la afinidad del material orgánico en suspensión con los metales, lo que explicaría los niveles encontrados también en esta estación. Debe destacarse el contenido en cobre, cadmio y zinc registrado en el caracol negro, con el mayor contenido de cobre en la estación 4, que está ubicada al centro de la bahía, cerca a la isla Corcovado, y cerca a las dos fuentes que aportan material metálico. Estos resultados estarían relacionados con el estado fisiológico de la especie, condicionado por las características ambientales del verano.

En la actualidad existe poca información sobre los procesos de intermineralización de las rocas, como fuente de aporte metálico al medio marino. Esto explicaría, entre otros factores, el mayor contenido metálico registrado en los organismos de esta zona. La dinámica en el área favorecería la desintegración y descomposición de los materiales de la corteza de las rocas y procesos físicos y químicos producirán material soluble o particulado (con contenido metálico) que se incorpora al sistema hidrológico con la posterior reacción química y conformación de sólidos o masas coloidales (Páez 1996).

En general, todas las especies mostraron una reducción en su concentración de plomo y zinc con respecto a evaluaciones anteriores, especialmente chitón y chorito. El cobre destacó por su mayor concentración, es decir, mayor afinidad con todas las especies, especialmente con los caracoles. Esta variabilidad y afinidad estarían relacionadas con el estado fisiológico, es decir, procesos bioquímicos, de la especie, condicionados por las características ambientales del periodo estacional (verano).

Factores ambientales, como la temperatura y salinidad influyen de manera directa en la bioacumulación de los metales.

EVALUACIÓN POR LÍNEA DE PLAYA

En la Tabla 5 se reúnen los resultados de los parámetros químicos y obtenidos en estaciones ubicadas en línea de playa.

El contenido de oxígeno fue aceptable (2,56 – 4,5 mL/L) y los demás parámetros se ajustaron a los requerimientos de calidad acuática, sólidos suspendidos totales (13,95 – 23,2 mg/L), pH (7,68 – 8,73), demanda bioquímica de oxígeno (1,35 – 4,16 mg/L) y sulfuros (0,25 – 0,37 µg H2S-S/L) respectivamente.

Los coliformes termotolerantes variaron entre <30 a 1,5 x 10³ NMP/100 mL. Los mayores valores se registraron en la estación A (rio Huarmey). En las estaciones A y B (desembocadura del río Huarmey) los valores sobrepasaron los estándares de calidad acuática de LGA para las clases IV y V.

El río introduce en esta temporada un volumen de aguas continentales que disminuye la salinidad en los alrededores, además del aporte de material terrígeno. Aledaño al curso del río se encuentra una diversidad de pequeños embrios que alimentan la zona.

CONCLUSIONES

- Aguas Costeras Frías (ACF) dominaron la bahía, sin embargo la distribución termo halina decreciente hacia la costa indicó la presencia de una mezcla de aguas causadas por la descarga estacional del río Huarmey.
- El área costera de Huarmey presentó valores aceptables de oxígeno disuelto para la vida acuática (>2,70 mL/L); éstos experimentaron un incremento en sus promedios con respecto a estaciones de otoño y primavera 2000.
• Las variables sólidos suspendidos totales (< 35,0 mg/L), pH (7,5-8,1) y sulfuros (<1,0 ug-at H2S-H/L), demanda bioquímica de oxígeno (<4,2 mg/L) se ajustaron a los requisitos de calidad acuática establecidas en la Ley General de Agua para las clases IV y V (Reglamento 1970). Las concentraciones mencionadas son comparables a las condiciones halladas normalmente en áreas de la costa peruana, que no presentan problemas significativos de carga orgánica biodegradable.

• El río Huarmey presentó concentraciones elevadas de coliformes (termotolerantes y totales), que superaron las normas de la LGA, lo cual lo convierte en una fuente de aporte microbiano al medio marino.

• En general, los elementos cadmio, plomo y zinc en sedimentos que superaron las normas de la LGA, lo cual lo convierte en una fuente de aporte microbiano al medio marino.

• Existen dos fuentes importantes de aporte metálico al ecosistema marino: las probables fugas o derrames durante el proceso de carga del concentrado del mineral en el muelle de Punta Lobitos y el río Huarmey, fuente puntual pero que es de carácter estacional.

• Los organismos mostraron una variabilidad con relación al contenido metálico; se observa en general una reducción, condicionada por el estado fisiológico y las características ambientales del periodo estacional en que se hizo el estudio (verano).

• Con excepción del chorito (contenido a cadmio), localizado en las proximidades del muelle Antamina, todas las demás especies estuvieron por debajo de los límites máximos permisibles contemplados en las normas internacionales (FAO 1983, Department of Health Australia 1983).

RECOMENDACIÓN

A fin de profundizar un mejor conocimiento de la afinidad de los elementos metálicos y los procesos de bioacumulación en los organismos, se recomienda que los muestras en el área de interés se realicen por lo menos dos veces al año, especialmente en las estaciones de verano e invierno.

REFERENCIAS

CEM. 1994. Innovators in Microwave Technology, USA.

STANDARD METHODS 1999. For the examination of water and wastewater. 20th Edition. APHA-AWWA-WPCF.
INTRODUCCIÓN

Las actividades mineras, relacionadas especialmente con las actividades portuarias de embarque de concentrado de minerales, ha motivado la realización de un programa de monitoreo permanente, en la bahía de Huarmey, orientado a un seguimiento especial respecto a las características físicoquímicas y microbiológicas de calidad acuática y del contenido metálico en el ecosistema marino costero. El presente informe corresponde a la evaluación de las características de calidad acuática realizada en otoño, del 24 al 26 abril 2003, en cumplimiento de los objetivos institucionales y los compromisos establecidos por la Comisión Técnica Multisectorial (CTM), creada mediante R.M. N° 149-2001 – PCM.

MATERIAL Y MÉTODOS

Muestreo

La evaluación por mar se realizó el 25 de abril, con la embarcación pesquera con motor fuera de borda “El Sembrador”. El área evaluada estuvo comprendida entre las coordenadas 10°04’01,4” a 10°05’58,1”S y 78°10’01,9” a 78°11’00,5” W. La carta de posiciones se muestra en la Figura 1.

Se establecieron 9 estaciones de observación y los registros se hicieron en superficie y a 0,5 m del fondo. Para la ubicación de las estaciones se utilizó un navegador GPS Garmin. La colecta de muestras de agua, y la determinación de temperatura, salinidad, oxígeno, pH, DBO₅, coliformes, sulfuros, aceites y grasa, se realizó de acuerdo a la metodología establecida por el IMARPE.

Para la medición de corrientes marinas en superficie y fondo se utilizó un correntómetro marca Aanderaa modelo RCM9 instrumento 214.

En el muestreo por playas se evaluaron tres estaciones. La estación A (a 500 m de la desembocadura de la bahía de Huarmey) fue la más afectada por las emisiones de concentrado de minerales debido a la cercanía de estos con las playas de deposición. Además, el estuario de la playa Manache se encuentra en el área de trabajo del proyecto de recuperación de la playas realizada por la Comisión Técnica Multisectorial (CTM). La colecta de muestras y análisis se realizaron en superficie y a 0,5 m del fondo.

RESUMEN

Jacinto ME, Domínguez N, Orozco R. 2008. Bahía de Huarmey, Áncash, Perú. Evaluación ambiental Abril 2003. Inf. Inst. Mar Perú. 35(1): 59-64.- Los estudios se realizaron del 24 al 26 abril 2003. Se registraron aguas de mezcla y costeras frías (ACF), con temperaturas muy homogéneas que en superficie y fondo variaron entre 15,1 y 16,4 °C. Los valores de oxígeno fueron menores que en la pasada evaluación del 2002, con promedio 2,2 mL/L (máximo 3,14 mg/L) en superficie y de 0,7 mL/L (1,00 mg/L) en fondo. Los sólidos suspensos totales mostraron un ligero decremento con respecto a prespesaciones pasadas pero no superaron los 26 mg/L. El bajo contenido de materia orgánica se manifestó en valores bajos de DBO (< 5,0 mg/L) y sulfuros (<0,7 µg-at H₂S-S/L) y el contenido de coliformes no superó los límites establecidos para la clase V de la LGA.

ABSTRACT

Jacinto ME, Domínguez N, Orozco R. 2008. Huarmey Bay, Ancash, Peru. Environmental Assessment in April 2003. Inf Inst Mar Peru. 35 (1): 59-64. - The studies were conducted from April 24 to 26, 2003. There were cool coastal waters and cold mixture (CCW), with homogeneous temperatures in surface and bottom ranged from 15.1 to 16.4 °C. Oxygen values were lower than in the last assessment in 2002, with mean 2.2 mL / L (maximum 3.14 mg / L) in surface and 0.7 mL / L (1.00 mg / L) in bottom. The total suspended solids showed a slight decrease compared to past surveys but did not exceed 26 mg / L. The low organic matter content was reflected in low values of BOD (<5.0 mg / L) and sulfide (<0.7 ug-at H₂S-S / L) and coliform content did not exceed the limits established for Class V of the General Water Law.

KEYWORDS: environmental assessment, Huarmey, April 2003. Peruvian sea
del río Huarmey); la B (en la parte norte de la zona de mezcla, por la descarga del río); y la estación C (frente a planta pesquera). El punto de muestreo estuvo aproximadamente a 5m de la línea de playa.

Los resultados numéricos obtenidos fueron tratados con el método de interpolación Kriging en el programa Surfer 7.0, para la elaboración de cartas de distribución vertical de los diversos parámetros mencionados.

RESULTADOS Y DISCUSIÓN

Parámetros hidrográficos y de circulación.

En la Tabla 1 se registran los resultados.

Temperatura.- La temperatura en la superficie del mar (TSM) varió entre 15,5 y 16,4 °C, con la isotermia de 16 °C muy influenciada por la incidencia de viento fuerte sobre la superficie y con dirección noreste. En general, la TSM se mostró bastante homogénea; las temperaturas más altas se registraron cerca de la costa, influenciadas por la incursión de aguas del río, dentro de la bahía y las más bajas temperaturas, fuera de la bahía, frente Punta San Antonio (Figura 2a). La temperatura de fondo se presentó homogénea (15,1 a 15,4 °C). Las isotermas se mostraron paralelas tomando la forma de la configuración de la costa (Figura 2).

Salinidad.- La salinidad superficial del mar (34,127 a 34,970 ups) fue mayor frente a Punta San Antonio; y menor cerca a la costa, en la desembocadura del río (Figura 3a). Los valores mínimos resultaron de la mezcla con la descarga del río Huarmey. Las masas de agua corresponden a aguas costeras frías (ACF) y a las aguas de mezcla. La salinidad en el fondo fue homogénea (34,938 y 34,973 ups), las masas de agua fueron ACF. La distribución de isohalinas muestra líneas perpendiculares paralelas a la configuración de la costa representando el ingreso de aguas con dirección sureste (Figura 3b).

Circulación.- La circulación en superficie tuvo velocidad entre 3,24 y 13,49 cm/seg. Las mayores se regis-

<table>
<thead>
<tr>
<th>Est.</th>
<th>Hora</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Prof. (m)</th>
<th>Temp. (°C)</th>
<th>Salin. (ups)</th>
<th>Veloc. (cm/seg)</th>
<th>Dir (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9:10</td>
<td>78°10'28.5"</td>
<td>10°04’01.4"</td>
<td>0.0</td>
<td>16.20</td>
<td>34.878</td>
<td>6.84</td>
<td>309.00</td>
</tr>
<tr>
<td>2</td>
<td>9:47</td>
<td>78°10'43.5"</td>
<td>10°04’31.5"</td>
<td>0.0</td>
<td>16.30</td>
<td>34.332</td>
<td>9.50</td>
<td>329.00</td>
</tr>
<tr>
<td>3</td>
<td>10:47</td>
<td>78°10’01.9"</td>
<td>10°05’00.5"</td>
<td>0.0</td>
<td>16.40</td>
<td>34.127</td>
<td>13.49</td>
<td>332.00</td>
</tr>
<tr>
<td>4</td>
<td>11:30</td>
<td>78°10’21.5"</td>
<td>10°05’09.0"</td>
<td>0.0</td>
<td>15.90</td>
<td>34.946</td>
<td>9.23</td>
<td>341.00</td>
</tr>
<tr>
<td>5</td>
<td>13:09</td>
<td>78°10’09.9"</td>
<td>10°05’26.1"</td>
<td>0.0</td>
<td>16.20</td>
<td>34.939</td>
<td>6.19</td>
<td>199.00</td>
</tr>
<tr>
<td>6</td>
<td>15:29</td>
<td>78°10’44.0"</td>
<td>10°05’26.6"</td>
<td>0.0</td>
<td>15.90</td>
<td>34.962</td>
<td>4.65</td>
<td>192.00</td>
</tr>
<tr>
<td>7</td>
<td>16:07</td>
<td>78°11’00.5"</td>
<td>10°05’58.1"</td>
<td>0.0</td>
<td>15.80</td>
<td>34.970</td>
<td>3.24</td>
<td>225.00</td>
</tr>
<tr>
<td>8</td>
<td>14:45</td>
<td>78°10’35.0"</td>
<td>10°05’36.1"</td>
<td>0.0</td>
<td>15.80</td>
<td>34.957</td>
<td>11.90</td>
<td>306.00</td>
</tr>
<tr>
<td>9</td>
<td>15:29</td>
<td>78°10’44.0"</td>
<td>10°05’36.1"</td>
<td>0.0</td>
<td>15.80</td>
<td>34.957</td>
<td>9.60</td>
<td>164.00</td>
</tr>
<tr>
<td>10</td>
<td>16:07</td>
<td>78°11’00.5"</td>
<td>10°05’58.1"</td>
<td>0.0</td>
<td>15.80</td>
<td>34.970</td>
<td>3.24</td>
<td>225.00</td>
</tr>
</tbody>
</table>

Figura 2. Distribución de temperaturas (°C) en: a) superficie y b) fondo

Figura 3. Distribución de Salinidad (UPS) disuelto en: a) superficie y b) fondo
Evaluación ambiental en la bahía de Huarmey. 2003

Jacinto, Domínguez, Orozco

Figura 4. Distribución de circulación marina (m/s) disuelto en: a) superficie y b) fondo

Figura 5. Distribución superficial de oxígeno disuelto (mL/L) en: a) superficie y b) fondo

Figura 6. Distribución superficial de potencial de iones hidronio (pH) en: a) superficie y b) fondo.

Figura 7. Distribución superficial de sólidos suspendidos totales (SST, mg/L) en: a) superficie y b) fondo.

costa. Los más intensos se hallaron frente a Punta San Antonio y Puerto Huarmey (Figura 4b).

Parámetros de calidad acuática

En la Tabla 2, se presentan los parámetros físico-químico y microbiológicos.

Oxígeno disuelto.- En superficie varió de 1,06 mL/L (1,51 mg/L, Estación 10) a 4,66 mL/L (6,65 mg/L, estación 1). El valor promedio fue de 2,2 mL/L (3,14 mg/L). Los mayores valores (3,0 - 4,7 mL/L) se registraron en estaciones muy costeras al norte de la bahía, asociados a las mayores temperaturas. En la Figura 5a, se observa una distribución de tendencia creciente hacia el norte.

En el fondo, los valores de oxígeno fueron de 0,39 mL/L (0,56 mg/L, Estación 10) a 1,44 mL/L (2,06 mg/L, Estación 1). El promedio fue de 0,74 mL/L (1,06 mg/L). El mínimo valor estuvo asociado a la baja temperatura y mayor profundidad (23 m) del área evaluada. Predomino una isólinea de 1 mL/L al norte de la desembocadura del río Huarmey (Figura 5b).

El fuerte viento durante el muestreo, no parece haber influido en los niveles de oxígeno disuelto en superficie; el 60% de las estaciones superficiales presentaron un contenido de oxígeno ≤2,0 mL/L (2,85 mg/L), asociado a la presencia de Aguas Costeras Frías.

En general, los valores promedio en superficie y fondo fueron inferiores a los registrados en el 2000 y 2002 (LMA, 2003) y estuvieron directamente relacionados con la temperatura en dichos períodos, destacando el período cálido de marzo 2002 (JACINTO et al. 2002).

Potencial de iones Hidronio (pH).- El pH en superficie varió de 7,13 (Estación 5) a 7,47 (Estación 1), con promedio de 7,24. En fondo, los valores fueron ligeramente superiores con 7,15 (Estación 9) a 7,60 (Estación 1). En ambos niveles el pH mostró una tendencia creciente hacia el norte (Figuras 6a y 6b) y mostró un comportamiento muy similar al del oxígeno. El parámetro de pH es el más estable y generalmente se ha mantenido dentro
del rango en todas las prospecciones realizadas anteriormente.

Sólidos Suspendidos Totales (SST). - En superficie variaron de 7,0 mg/L (Estación 1) a 23,0 mg/L (Estación 2); con promedio 15,8 mg/L. Hacia el exterior de la bahía se observó el predominio de una isolínea de 20 mg/L (Figura 7a). Los valores encontrados en la presente prospección mostraron una ligera disminución con respecto a pasadas evaluaciones.

A nivel fondo, los valores de SST fueron ligeramente mayores con respecto a los de superficie, los cuales variaron de 14.0 mg/L (estación 9) a 26.0 mg/L (estación 2) y un valor promedio de 20.1 mg/L. El predominio de una isolínea de 20 mg/L paralelo a la línea costera se observó a este nivel (Figura 7b).

Aceites y Grasas (A y G). - A nivel superficial los valores variaron de 1,0 mg/L (Estación 3) a 3,4 mg/L (Estación 6), con promedio de 2,0 mg/L. Su distribución mostró una tendencia creciente hacia el exterior de la bahía entre Puerto Huarmey y Punta Lobitos, con un núcleo de 3,0 mg/L (Figura 8a). El aporte orgánico de este compuesto estaría asociado a las descargas industriales pesqueras, o por restos oleosos provenientes de las embarcaciones que acodan o transitan en la zona.

Sulfuro de Hidrógeno. - Las concentraciones de sulfuros a nivel de fondo fueron <1,0 µg-at H₂S-S/L. Los valores variaron de 0,57 µg-

<table>
<thead>
<tr>
<th>Estac.</th>
<th>Ubicación</th>
<th>T° C</th>
<th>Salin. ups</th>
<th>SST mg/L</th>
<th>Oxígeno ml/L</th>
<th>pH</th>
<th>AYG mg/L</th>
<th>DBO5 mg/L</th>
<th>Coliformes Totales NMP/100 ml</th>
<th>Coliformes Termotolerantes NMP/100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Río a unos 500m de desenbocadura</td>
<td>26.1</td>
<td>3.5</td>
<td>6.68</td>
<td>7.83</td>
<td>2.3</td>
<td>8.21</td>
<td>4.3 x 10^3</td>
<td>4.3 x 10^2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Zona de mezcla a 300 m al norte de desemb.</td>
<td>21.2</td>
<td>13.838</td>
<td>16.3</td>
<td>5.91</td>
<td>7.56</td>
<td>2.1</td>
<td>3.33</td>
<td>4.3 x 10^3</td>
<td>2.3 x 10^5</td>
</tr>
<tr>
<td>C</td>
<td>A 5m de línea de playa frente a planta pesquera</td>
<td>16.0</td>
<td>34.925</td>
<td>34.3</td>
<td>1.50</td>
<td>7.25</td>
<td>2.1</td>
<td>1.67</td>
<td>2.4 x 10^2</td>
<td>< 30</td>
</tr>
</tbody>
</table>

CONCLUSIONES

- La distribución de la temperatura estuvo muy influenciada, en parte, por la incidencia del viento en la superficie y por la descarga del río Huarmey.
- El área evaluada presentó básicamente aguas de mezcla en superficie, pero también se...
registró la presencia de aguas costeras frías en el fondo.

- La circulación marina en superficie estuvo muy influenciada por la descarga del río Huarmey. A nivel de fondo, en general, la corriente se presentó con dirección sur-norte y con más intensidad que en superficie.

- En general, los parámetros de oxígeno disuelto, pH, SST, DBO y sulfuros se mantuvieron dentro de los rangos característicos de la bahía; sin embargo, existe un nivel significativo de compuesto graso casi constante, y cuya fuente estaría relacionada con el tráfico y actividades marítimas y pesqueras de la zona.

- A nivel de línea de playas destacaron las elevadas temperaturas asociadas a alto contenido de oxígeno para las estaciones de río y zona de mezcla. Los indicadores de contaminación fecal superaron los límites establecidos, especialmente para la clase V.

Referencias

INTRODUCCIÓN
El monitoreo de la contaminación marina por compuestos orgánicos incluye los hidrocarburos del petróleo. El programa se viene realizando con mayor intensidad desde los años noventa, en diferentes áreas costeras seleccionadas. Se realiza mediante el análisis por espectrofluorometría, orientado a actualizar los niveles presentes en un área recurrente, o en nuevas áreas a evaluar.

Actualmente se da mayor énfasis al análisis de los sedimentos marinos y, en el futuro, se recomienda ampliar la cobertura con la inclusión de un indicador biológico efectivo, como son los moluscos bivalvos, para medir el estado y la tendencia de la contaminación en el tiempo.

MATERIAL Y MÉTODOS

Muestreo.- Las áreas costeras seleccionadas y monitoreadas dentro del Plan Operativo Institucional anual, se incluyen en la Tabla 1 y en la Figura 1.

Métodos.- La colecta de sedimentos y aguas, así como el tratamiento y análisis instrumental de las muestras se han desarrollado en base a la siguiente metodología:
- Métodos referenciales para Estudios de Contaminación Marina N° 20: UNEP/COI/IAEA, 1992

Las muestras de agua de mar se colectaron a 1,0 m del nivel superficial, en botellas ámbar de 4 litros de capacidad, dejando un espacio disponible para la adición del preservante (CCl₄) y almacenado en un lugar fresco y oscuro hasta su transporte y análisis en laboratorio.

Para obtener muestras de sedimento se utilizó una draga Van Veen de 0,024 m²; con una espátula metálica se tomó material de los 3,0 cm superficiales, se cubrió con papel metálico, se almacenaron en hielo, y en el laboratorio se congelaron (–20 °C) para su posterior análisis.

RESUMEN
Cabello R, Jacinto ME. 2008. Hidrocarburos de petróleo en áreas marino costeras del Perú, 2004. Inf. Inst. Mar Perú 35(1): 65-74.- Se han evaluado los hidrocarburos aromáticos en agua y en sedimento marino. En sedimentos de fondo como indicador del deterioro o estado de contaminación, se ha empleado el contenido de compuestos aromáticos. Los resultados indicaron estados críticos en Talara (31,7 ug/g), El Ferrol, Chimbote (28,7 ug/g), Callao (12,7 ug/g). En Coishco, Huarmey, Supe-Paramonga, Carquín, Huacho, Chancay, los contenidos no superaron 1,0 ug/g de componentes aromáticos. En la columna de agua, las áreas de Paita, Sechura, Malabrigo, Samanco, Paracas, presentaron ingresos o permanencias significativas de residuos oleosos en la columna de agua (1,0 m de superficie), y es necesario complementar la información existente con el análisis de los sedimentos de fondo para puntualizar el estado o grado de contaminación.

PALABRAS CLAVE: contaminación, hidrocarburos de petróleo, áreas costeras, mar peruano.

ABSTRACT
Cabello R, Jacinto ME. 2008. Petroleum hydrocarbons in marine coastal areas of Peru. 2004. Inf Inst Mar Peru 35 (1): 65-74.- Aromatic hydrocarbons have been evaluated in water and marine sediments. The content of aromatic compounds in bottom sediments, was used as an indicator of deterioration or pollution. The results showed critical situations in Talara (31.7 ug/g), El Ferrol, Chimbote (28.7 ug/g), Callao (12.7 ug/g). In Coishco, Huarmey, Supe-Paramonga, Carquín, Huacho, Chancay, the content did not exceed 1.0 ug/g of aromatic compounds. The áreas of Paita, Sechura, Malabrigo, Samanco, Paracas, presented significant revenue of oily waste stays in the water column (1.0 m of surface), and it is necessary to increase existing information with sediment analysis, to point out the pollution degree.

KEYWORDS: pollution, petroleum hydrocarbons, coastal areas, Peruvian sea.
La lectura instrumental se ha efectuado en el equipo Espectrofluorómetro uv Shimadzu RF 1501, se empleó estándar de criseno para la calibración correspondiente de acuerdo a las sugerencias establecidas por el Convenio MARPOL 73/78, la misma que es empleada por los países miembros de la Comisión Permanente del Pacífico Sur (CPPS).

Las áreas costeras monitoreadas se presentan en la Figura 1.

RESULTADOS Y DISCUSIÓN

ÁREA COSTERA DE TALARA

Esta área se monitorea desde 1980. Está considerada como un área crítica de contaminación por hidrocarburos aromáticos en sedimentos marinos (31,7 ug/g, abril 1997).

La Figura 2 muestra la carta de posiciones. La Tabla 2 contiene los resultados analíticos del contenido de grupos aromáticos disueltos / dispersos en agua marina.

Hidrocarburos aromáticos del petróleo totales disueltos en Talara.- El contenido de hidrocarburos disueltos totales (HDT) no excedió los 2,5 ug/L (expresados en unidades de criseno). Se observa una tendencia creciente dirigida hacia el interior de la bahía y hacia el sur del área evaluada (Figura 3). Estos valores no necesariamente indican el grado o el estado de contaminación, sino el contenido presente al momento de la prospección, el cual estaría sujeto a transformaciones en el tiempo debido a los factores meteorológicos y de degradación en este medio dinámico (agua marina). Es posible que indique ingresos recientes al sistema acuífero, pero es difícil precisar fecha de ingreso o en que estado de descomposición se encuentra el residuo detectado. Sin embargo, es importante destacar que el nivel de concentración, aunque es menor al nivel establecido por la Comisión Oceanográfica Internacional (COI) en 1984 como estándar de referencia para aguas no contaminadas (10 ug/L), es comparable con el que se reporta en áreas críticas como Callao y Chimbote.
ÁREA COSTERA DE PAITA

Evaluaciones anteriores (2002) indicaron valores no significativos en el contenido de estos contaminantes en agua marina (<2,62 ug/L) y en sedimentos de fondo marino (<2,0 ug/g). Los resultados para marzo 2004 se muestran en la Tabla 3; la carta de posiciones en la Figura 4 y los resultados en la Figura 5.

Hidrocarburos de petróleo totales disueltos en Paita (HDT).- Como se observa en la Tabla 3, en Paita, los valores no han superado 1,0 ug/L (expresado en unidades de criseno), lo que indica valores no significativos en el sistema acuático. La COI en 1984 estableció un valor máximo de 10 ug/L para aguas no contaminadas. Estos valores se han mantenido dentro del rango normalmente hallado en esta área costera (<1,0 ug/L). La Figura 6 se refiere a los hidrocarburos de petróleo aromáticos totales registrados en sedimentos, en marzo 2004.

La Figura 7, muestra la tendencia en el tiempo de los mencionados contaminantes. El contenido disuelto no ha superado los 6 ug/L hallados en 1996. Hasta la fecha no se han detectado valores mayores; sin embargo, es necesario destacar el vertido clandestino de las embarcaciones en la franja costera (dentro de las 3 mn) que se observa circunstancialmente como manchas de petróleo a la deriva en el área evaluada.

Hidrocarburos aromáticos de petróleo totales (HAT) en Paita.- En esta oportunidad (Figura 8) las concentraciones han sido menores de lo esperado, el máximo valor hallado ha sido 6 ug/g (expresado en unidades de criseno por gramo de muestra seca). El área costera de Paita de acuerdo a lo informado por Cabello y Jacinto (2002) no ha presentado valores significativos de estos contaminantes en el medio marino.

El área costera de Paita no ha mostrado incremento en el contenido de hidrocarburo del petróleo de tipo aromáticos totales, lo que se reflejó...
en los niveles obtenidos en aguas y sedimentos de fondo marino. Los valores no superaron el máximo (3,6 ug/L y 6,1 ug/g) halladas en ambas matrices en periodos anteriores.

ÁREA COSTERA DE SECHURA

Se presentan los resultados obtenidos en la evaluación del área costera de Sechura desarrollada mediante prospección entre el 17-19 de junio 2004 (Figura 9). Los resultados se presentan en la Tabla 4.

Hidrocarburos aromáticos de petróleo totales disueltos (HDT) en Sechura.- Los resultados han presentado un promedio de 1,46 ug/L con valores que describen un mayor contenido de estos contaminantes en las aguas marinas. Estos valores han superado las concentraciones detectadas en áreas como Paita, 31 marzo 2004 (<1,0 ug/L).

Como se observa en la Tabla 4, los valores fueron mayores que las áreas de Talara y Paita con un importante ingreso de estos contaminantes en el sistema acuático. Sin embargo, la evaluación en los sedimentos de fondo precisaría el estado de contaminación (grado o nivel) presente en este periodo.

Las isólas de distribución (Figura 10) muestran isólas dominantes de 1,5 ug/L promedio localizadas principalmente en el sector sur y en el interior del área evaluada. La tendencia creciente se extendió hacia el este de la bahía.

Evaluaciones anteriores (Figura 11) indican que los valores registrados son característicos del área de Sechura. Los mayores valores se han hallado generalmente al sur-oeste del área entre Petro Perú - Punta Lagunas a Punta Tric Trac (Jacinto y Cabello 1999). Sin embargo, los valores no fueron mayores que los estándar diferencial COI (1982) de 10 ug/L (expresado en unidades de criceno) para aguas no contaminadas. Las evaluaciones realizadas por IMARPE en aguas marino costeras del Perú han hallado valores próximos a 1,0 ug/L, cuando no destacan intensas actividades relacionadas con la manipulación, transporte, extracción o refinación de petróleo y sus derivados, como el caso de Ite (noviembre 1997 <1,0 ug/L).

La evaluación en agua no es un indicador óptimo para determinar el estado de contaminación y sus tendencias de persistencia en el tiempo, debido a que esta matriz corresponde a un sistema dinámico no acumulativo. Es importante considerar la colecta de organis-

Tabla 5.- Resultados Analíticos. Área Marino Costera de Coishco 2004

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Profundidad (m)</th>
<th>H D T (ug/L)</th>
<th>H A T (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>78°38'24"</td>
<td>0'00"31.3"</td>
<td>9</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>78°39'14.5"</td>
<td>0'00"37.0"</td>
<td>15</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>78°38'51.8"</td>
<td>0'00"11.0"</td>
<td>15.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>78°36'06.1"</td>
<td>0'00"10.1"</td>
<td>15</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>E "AT"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Zona de Punta Santa.

Tabla 6.- Resultados Analíticos. Área Marino Costera de Huarmey 10 y 19/05/2004

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Profundidad (m)</th>
<th>H D T (ug/L)</th>
<th>H A T (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>78°29'59.3"</td>
<td>0'04"32.6"</td>
<td>7</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>29</td>
<td>78°29'36.0"</td>
<td>0'04"05.9"</td>
<td>10</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>78°30'29.5"</td>
<td>0'04"22.8"</td>
<td>8</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>31</td>
<td>78°31'32.1"</td>
<td>0'04"02.0"</td>
<td>12</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>32</td>
<td>78°31'17.4"</td>
<td>0'04"26.4"</td>
<td>17</td>
<td>1.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Tabla 7.- Resultados Analíticos. Área Marino Costera de El Ferrol 2004

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Profundidad (m)</th>
<th>H D T (ug/L)</th>
<th>H A T (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>78°34'19.9"</td>
<td>0'04"46.0"</td>
<td>3</td>
<td><1.0</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>78°35'42.0"</td>
<td>0'04"56.5"</td>
<td>5</td>
<td>1.2</td>
<td>3.1</td>
</tr>
<tr>
<td>15</td>
<td>78°36'31.1"</td>
<td>0'04"22.3"</td>
<td>4</td>
<td>1.2</td>
<td>28.7</td>
</tr>
<tr>
<td>16</td>
<td>78°35'10.3"</td>
<td>0'04"27.5"</td>
<td>6</td>
<td><1.0</td>
<td>11.2</td>
</tr>
<tr>
<td>17</td>
<td>78°36'29.7"</td>
<td>0'04"05.1"</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>78°35'29.9"</td>
<td>0'04"33.9"</td>
<td>6</td>
<td>1.1</td>
<td><1.0</td>
</tr>
<tr>
<td>19</td>
<td>78°36'12.3"</td>
<td>0'04"31.9"</td>
<td>4</td>
<td><1.0</td>
<td>10.6</td>
</tr>
<tr>
<td>20</td>
<td>78°34'09.1"</td>
<td>0'04"29.8"</td>
<td>6</td>
<td>1.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Figura 9. Carta de Posiciones. Área Marino Costera de Sechura 17-19 junio 2004

Figura 10. Distribución de Hidrocarburos del petróleo disueltos en agua de mar (HDT, ug/L). Área Costera de Sechura (18-19/06/04).
Áreas costeras de Coishco, El Ferrol y Samanco

Las áreas costeras de Coishco (2-3 febrero y 21 mayo), El Ferrol (5 y 10 febrero y 22 mayo) y Samanco (6 febrero y 23 mayo) fueron motivo de evaluación con relación al contenido de hidrocarburos aromáticos en sedimentos y del contenido de estos disueltos en agua de mar. Este último parámetro fue evaluado dos veces en febrero y mayo del 2004.

Las Tablas 5, 6 y 7 presentan los resultados analíticos en las áreas evaluadas.

La carta de posiciones de los 2 periodos evaluados se muestra en las Figuras 12 y 13.

Hidrocarburos aromáticos del petróleo totales disueltos.- Coishco y El Ferrol mostraron tendencias similares en el tiempo, pero Samanco incrementó notablemente sus valores en el segundo período de estudio.

La Figura 13 muestra las tendencias espaciales desarrolladas por los contaminantes. Las mayores concentraciones se proyectaron en el interior de la bahía Coishco. El Ferrol presentó una distribución creciente característica hacia el norte del área y en el centro. En Samanco se halló una fuerte tendencia creciente dirigida al norte, en
el sector de la caleta Vesique. Los valores hallados son comparables a los de áreas costeras como Callao, Pisco-Paracas con importante manipulación y transporte de material oleaginoso. Sin embargo, son inferiores al estándar COI 1984 (<10 ug/L) para aguas no contaminadas.

Coishco ha presentado valores <1,0 ug/g; Samanco tiene un valor puntual que merece especial atención, puesto que evaluaciones anteriores reportaron concentraciones <1,0 ug/g y se observa una tendencia creciente en el tiempo. La bahía El Ferrol ha sido considerada como una de las tres áreas críticas de contaminación por hidrocarburos, que incluyen Callao y Talara, en las que es usual hallar datos que llegan a 30 ug/g (Jacinto y Cabello 1999).

Área Costera de Huarmey

El área costera de Huarmey se monitorea desde marzo 2002. Se destaca por presentar un mineraducto perteneciente a la Minera Antamina y una empresa pesquera en su franja costera. La carta de posiciones (Figura 15) muestra las estaciones consideradas en la colecta de agua y sedimento marino. La Tabla 8 contiene los resultados analíticos en la evaluación de hidrocarburos disueltos/dispersos en agua como los adsorbidos en los sedimentos de fondo.

A la fecha Huarmey es un área que no presenta problemas significativos de carga orgánica de tipo persistente como los hidrocarburos aromáticos del petróleo (Figura 16) a pesar del permanente tráfico de buques en Punta Lobitos.

Área Costera de Malabrigo

Esta área costera ha sido evaluada por primera vez (Figura 17), sin embargo, es conocida la mediana actividad que se desarrolla, orientada principalmente a la producción de harina de pescado.

La Tabla 9 presenta los resultados obtenidos, los cuales señalan un ingreso importante de carga orgánica.

Tabla 9. Resultados Analíticos. Área Marino Costera de Malabrigo. 18/08/04

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Profundidad (m)</th>
<th>H.D.T. (ug/L)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-4</td>
<td>79°27'22.7''</td>
<td>07°42'07.2''</td>
<td>4.5</td>
<td><1,0</td>
</tr>
<tr>
<td>E-9</td>
<td>79°26'37.0''</td>
<td>07°41'22.1''</td>
<td>7</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-10</td>
<td>79°27'29.1''</td>
<td>07°41'01.2''</td>
<td>10</td>
<td>2,0</td>
</tr>
<tr>
<td>E-15</td>
<td>79°26'45.5''</td>
<td>07°40'49.1''</td>
<td>8</td>
<td>7,1</td>
</tr>
<tr>
<td>E-16</td>
<td>79°27'17.1''</td>
<td>07°40'22.8''</td>
<td>10</td>
<td>3,2</td>
</tr>
<tr>
<td>E-6</td>
<td>79°28'56.5''</td>
<td>07°41'19.9''</td>
<td>13</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-28</td>
<td>79°26'12.7''</td>
<td>07°41'10.2''</td>
<td>7.2</td>
<td>4,0</td>
</tr>
<tr>
<td>E-27</td>
<td>79°26'13.6''</td>
<td>07°40'28.9''</td>
<td>3</td>
<td><1,0</td>
</tr>
<tr>
<td>E-22</td>
<td>79°26'46.7''</td>
<td>07°39'59.3''</td>
<td>9</td>
<td>2,5</td>
</tr>
</tbody>
</table>

*Hidrocarburos del petróleo expresados en unidades de criseno. n.d. = no detectado. LD: 1 ug/g, fng/L.
Hidrocarburos de petróleo en áreas marino costeras peruanas. 2004

Cabello, Jacinto

nica persistente (los hidrocarburos disueltos). Estos valores han estado asociados al contenido de aceites y grasas (material orgánico extractable en hexano) analizado en el mismo periodo en que se hallaron valores de hasta 9,7 mg/L, un contenido bastante fuerte en materia orgánica que afecta la calidad acuática del medio (Fuente: Línea de Monitoreo y Evaluación Ambiental, 2004).

Hidrocarburos disueltos / dispersos en agua.- Las isolíneas de distribución (Figura 18) presentan una tendencia creciente hacia el sector central de la bahía frente a la zona industrial, y reflejan las fuentes de ingreso al medio marino. Sin embargo, es necesario destacar el uso de indicadores de adsorción (como los sedimentos de fondo) o de bioacumulación de características de mayor estabilidad espacial en organismos marinos, especialmente los bivalvos, que son capaces de reflejar de manera óptima el estado de salud ambiental del sistema marino debido a cierta estabilidad en su hábitat.

ÁREA COSTERA DE SUPE - PARAMONGA

El área costera de Supe a Paramonga se evalúa desde enero 1997.

Evaluaciones anteriores han registrado contenidos no significativos de los compuestos en estudio. Sin embargo, esta área ha experimentado derrames de sustancias o derivados de petróleo de manera recurrente (Tabla 10).

Hidrocarburos disueltos / dispersos en agua.- Como se observa en la Tabla 10, existe un importante ingreso de hidrocarburos petrolígenos al sistema acuático. En esta oportunidad se presentaron dos núcleos con los mayores valores; el primero situado en la zona norte del área y el segundo, en la zona sur frente al puerto de Supe; ambos con contenidos similares (5 ug/L), la isolínea de 3,0 ug/L refleja el promedio obtenido en el área (Figuras 19 y 20).

Hidrocarburos aromáticos totales en sedimentos.- La naturaleza granulométrica de la zona asociada principalmente a la forma abierta del área, a la fuerte intensidad de circulación marina (promedios de 14,3 cm/s en superficie y de 9,8 cm/s en fondo), y a la presencia de flujos divergentes (Fuente: Campos Martín 2004), no favorecen la sedimentación y adsorción de estos contaminantes en el lecho marino, lo que refleja un contenido no significativo en el sedimento marino (Figura 21).

Tabla 10. Resultados Analíticos. Área Marino Costera de Supe-Paramonga 18/04/2004

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Profundidad (m)</th>
<th>HDT (ug/L)</th>
<th>HAT (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>77°21' 59.5"</td>
<td>10°38' 29.5"</td>
<td>11</td>
<td>2.6</td>
<td>< 1.0</td>
</tr>
<tr>
<td>E-3</td>
<td>77°54' 03.2"</td>
<td>10°40' 15.8"</td>
<td>20</td>
<td>2.8</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-4</td>
<td>77°52' 37.9"</td>
<td>10°41' 39.4"</td>
<td>16.5</td>
<td>5.1</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-5</td>
<td>77°50' 29.8"</td>
<td>10°42' 00.7"</td>
<td>20.5</td>
<td>2.6</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-6</td>
<td>77°50' 29.8"</td>
<td>10°44' 47.7"</td>
<td>17.5</td>
<td>2.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-7</td>
<td>77°49' 49.9"</td>
<td>10°43' 39.9"</td>
<td>10</td>
<td>4.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-8</td>
<td>77°47' 32.0"</td>
<td>10°44' 18.5"</td>
<td>17.5</td>
<td>3.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>E-9</td>
<td>77°46' 40.7"</td>
<td>10°46' 10.5"</td>
<td>15</td>
<td>2.9</td>
<td>< 1.0</td>
</tr>
<tr>
<td>E-10</td>
<td>77°46' 26.2"</td>
<td>10°46' 00.9"</td>
<td>20</td>
<td>2.8</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-11</td>
<td>77°43' 45.5"</td>
<td>10°47' 40.5"</td>
<td>19</td>
<td>5.6</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-12</td>
<td>77°43' 45.5"</td>
<td>10°47' 30.5"</td>
<td>9</td>
<td>1.4</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Tabla 11. Resultados Analíticos. Área Marino Costera de Huacho 10/06/2004

<table>
<thead>
<tr>
<th>Estación</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Profundidad (m)</th>
<th>HDT (ug/L)</th>
<th>HAT (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-6</td>
<td>77°53' 04.4"</td>
<td>11°09' 41.0"</td>
<td>16</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-7</td>
<td>77°53' 56.1"</td>
<td>11°05' 33.8"</td>
<td>14</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-8</td>
<td>77°37' 24.7"</td>
<td>11°06' 01.4"</td>
<td>12</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-9</td>
<td>77°37' 33.5"</td>
<td>11°06' 49.5"</td>
<td>18</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-11</td>
<td>77°35' 44.5"</td>
<td>11°06' 53.2"</td>
<td>7</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-12</td>
<td>77°35' 54.7"</td>
<td>11°07' 07.4"</td>
<td>19</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>E-13</td>
<td>77°37' 18.1"</td>
<td>11°10' 19.8"</td>
<td>3</td>
<td>< 1.0</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

* Hidrocarburos del petróleo expresados en unidades de crízeno:
 n.d. = no detectado
 LD: 1 ug/g, 1 ug/L
Área costera de Huacho-Carquín

La carta de posiciones se presenta en la Figura 22. Estas áreas se evaluaron durante el otoño 2004.

Las Tablas 11 y 12 presentan los resultados obtenidos en las áreas de Huacho y Carquín, con relación al contenido de hidrocarburos del petróleo en agua y sedimento marino.

Área Costera del Callao

El área del Callao ha sido motivo de numerosas evaluaciones, debido a su condición de franja costera de relevancia económica industrial. Es el principal puerto peruano; existe un alto porcentaje de fábricas de diversos rubros, que realizan sus descargas directas al mar y las evacuaciones indirectas a través de la red de alcantarillado público. Un sector crítico está ubicado en la zona norte, debido a la presencia de la refinería La Pampilla; otro sector frente al río Rímac y la rada interior.

La Figura 26 muestra la tabla de posiciones, la prospección se efectuó el 5 y 6 de julio 2004. La tabla 14 presenta los resultados analíticos.

Hidrocarburos del petróleo disueltos / dispersos en agua marina.

La presencia de hidrocarburos del petróleo en la capa superficial alcanzó un promedio de 1,6 ug/L. La Figuras 27 y 28 muestran la distribución espacial de los contaminantes.
ÁREA COSTERA DE PISCO - PARACAS

El área costera de Paracas destaca por las múltiples actividades comerciales o económicas que se desarrollan en ella, principalmente la industria pesquera, turística y cuenta además con un importante puerto San Martín, de intenso uso. Los resultados analíticos se presentan en la Tabla 15, y la carta de posiciones en la Figura 29 y la distribución en la Figura 30.

CONCLUSIONES

- Las áreas costeras como Huarmey, Supe-Paramonga, Carquín, Huacho, Chancay, Coishco, no presentaron contenidos significativos de hidrocarburos aromáticos del petróleo en los sedimentos de fondo empleados como indicadores de su acumulación.

- Las áreas costeras como Paita, Samanco, Sechura y Malabrigo presentaron ingresos relativamente significativos de compuestos hidrocarbonados en las aguas marinas. Las áreas de Paita y Samanco presentaron un nivel medio de contaminación (valores puntuales máximos de 6,0 ug/g en sedimentos) con relación a las áreas críticas.

- Es importante considerar la necesidad de un análisis complementario de sedimentos de fondo en las áreas de Paracas, Sechura y Malabrigo para actualizar el estado de acumulación de los residuos petrolígenos.
REFERENCIAS

INSTRUCCIONES A LOS AUTORES. INF. INST. MAR PERÚ

El Informe del instituto del mar del Perú (Inf. Inst. Mar Perú) (ISSN 0378-7702) (IIMP) es la publicación trimestral del Instituto del Mar del Perú, que da a conocer los resultados preliminares o finales de una operación o actividad programada dentro de un campo específico de la investigación científica y tecnológica y que requiere difusión inmediata. En principio, sus páginas están abiertas a las investigaciones realizadas por el personal técnico y científico del propio Instituto del Mar del Perú (IMARPE), pero podrán aceptarse trabajos realizados en otras instituciones o laboratorios, autorizados por la Dirección Científica, previa calificación por Revisores Especializados y aceptación del Comité Editorial y del Editor. Además, publica notas científicas, notas técnicas, reseñas bibliográficas, y obituarios referidos a destacados investigadores marinos destacados, peruanos y de otras nacionalidades.

Manuscritos originales

La solicitud para publicación de un trabajo en el IIMP deberá ser remitida a la sede del Instituto del Mar del Perú, dirigida al Director Científico. Los manuscritos deberán presentarse impresos en original, a una columna, y dos copias fotostáticas (incluyendo ilustraciones y tablas) en una sola cara en papel tamaño A4, a doble espacio y con márgenes amplios. Se acompañará además el disquete o CD. Los textos deberán seguir estrictamente la estructura adoptada en el último volumen del IIMP, o serán devueltos a los autores.

La primera página incluirá: (1) Título del trabajo (explícito, descriptivo y tan corto como sea posible), debajo, irá el título traducido al inglés; (2) El nombre completo del autor o los autores [(a) El autor debe decidir una forma definitiva de expresar su nombre, es decir no utilizar a veces los dos nombres de pila y los dos apellidos; otras veces sólo un nombre y un apellido; otras veces poner sólo iniciales para el segundo nombre y el segundo apellido; si esto cambia, en los registros y en las bases de datos, ya se trataría de autores diferentes; (b) se aconseja a los autores que generalmente utilizan sus dos apellidos, los unan mediante un guión]; también debe incluirse la dirección institucional, el domicilio y el correo electrónico, en notas al pie de página); En las páginas siguientes, deberá ir un Resumen en español, incluyendo palabras clave y un Abstract en inglés, incluyendo Keywords (Resúmenes en otros idiomas son opcionales). También debe incluirse el título abreviado sugeridos para los encabezamientos de páginas impares. Las notas, reseñas bibliográficas, etc. no tendrán resúmenes.

Los textos deberán ser concisos, claros y directos, e incluirán usualmente una Introducción, Material y Métodos, Resultados, Discusión (podría ser un solo capítulo, Resultados y Discusión) y Conclusiones, además de Agradecimientos y Referencias de Literatura.

Los nombres científicos deberán ser escritos en cursivas e irán acompañados por autor y familia cuando sean citados por primera vez en el texto. Los nombres científicos deben ser corroborados con cuidado. Las medidas y sus abreviaturas deben corresponder al Sistema Internacional de Unidades (SI).

En las citas bibliográficas en el texto, los nombres de autores irán en letras Versales, seguidos por el año de publicación, p.ej. (Guevara-Carrasco 2004), Espinoza y Zeballos (2004) o Estrella et al. (2006). También pueden hacerse las citas utilizando un número arábigo escrito en superíndice, que corresponda a la relación de referencias numeradas al final del artículo, de acuerdo al orden en que aparecen citadas en el texto.

El tipo de letra que se recomienda es el “arial”, y su tamaño en el artículo variará de la siguiente manera: Título en español, **14 NEGRA ALTA** (= mayúsculas) centrado. Título en inglés, **12 NEGRA ALTA centrado**. Nombre de los autores, **12 cursiva blanca (a y b)**, centrado. Direcciones de los autores, **9 blanca**, centrado.- **RESUMEN** y **CAPÍTULOS 12 negra, alta. Subcapítulo, 12 negra alta y baja** (mayúscula y minúscula), alineado a la izquierda. Texto en general **11 blanca**, inicio de párrafos con sangría. Referencias de Literatura, en tipo **10 blanca**.

Ilustraciones y tablas

Las fotografías, dibujos, gráficos y mapas serán considerados como **Figuras**, numeradas consecutivamente con guairismos arábigos. **Se recomienda remitir las ilustraciones y tablas como imágenes digitalizadas contenidas en archivos electrónicos** (separadas del archivo conteniendo el texto).

Si se tratara de dibujos, normalmente deberán ser efectuados con tinta china sobre papel Canson y montados sobre cartulina blanca. Las fotografías (a color, o blanco y negro) impresas en papel brillante (no mate) deberán ser nítidas y contrastadas, y serán montadas en cartulina blanca; no se recomienda la remisión de diapositivas. Cuando sea pertinente, la ilustración llevará una indicación del grado de aumento o reducción con respecto al original; se recomienda utilizar una barra en escala métrica e indicar el tamaño final con que deberá aparecer en la publicación (tomando en cuenta el tamaño de página del IIMP (A4). Toda ilustración deberá estar claramente identificada con nombres de autores, título del manuscrito y número de figura, anotando estos datos al reverso de la misma. Las leyendas para las ilustraciones, numeradas consecutivamente, irán en página aparte, luego del texto del artículo.

Las Tablas deberán ir numeradas consecutivamente, con guairismos arábigos, e impresas en páginas aparte. Sus leyendas, numeradas consecutivamente, irán en página aparte, luego del texto del artículo.

25 sobretiros (o separatas) serán entregados gratuitamente a los autores; si se desea más sobretiros, el exceso les será cobrado.

Nota.- **Debemos resaltar dos aspectos importantes:**

1.- **En el Sistema Internacional de Unidades (SI):** Algunos de los símbolos actuales aceptados son:

- m (metro), cm (centímetro), mm (milímetro), km (kilómetro), g (gramo), ha (hectárea), mn (milla náutica), L (litro), mL (mililitro), W (vatio), kW (kilovatio), Hz (hertzio), kHz (kilohertzio).

2.- **En la escritura de cantidades:** - No debe usarse el punto decimal, sino la coma decimal. Ej. Un sol con cincuenta céntimos será S/. **1,50** (está mal si se escribe 1.50). Ver también a continuación.

- Las cantidades de miles y millones, deben separarse por puntos, cada tres dígitos: Ej. Oncemil quinientos soles con cincuenta céntimos será: S/. **11.500,50** (estará mal si se escribe 11,000.50)

- quince millones trescientos cincuenta mil y veinticinco centavos se deberá escribir **15.350.000,25**

- Cuando en un texto se tratan cifras con muchos ceros puede escribirse en letras. Ej. 1.000.000.000 (mejor escribir mil millones), o en vez de 100.000 escribir cien mil.

(Cualquier consulta a paguil@imarpe.gob.pe)

Bahías El Ferrol y Coishco, Chimbote, Perú: Evaluación ambiental en abril y julio 2002
 El Ferrol and Coishco bays, Chimbote, Perú: April and July 2002 environmental assessment
 GUADALUPE SÁNCHEZ RIVAS, EDGARDO ENRIQUEZ TRAVEZANO, VÍCTOR GARCÍA NOLAZCO ... 7

Bahía del Callao, Perú. Evaluación ambiental en marzo 2002
 Callao Bay, Perú. Environmental assessment in March 2002
 GUADALUPE SÁNCHEZ RIVAS, RITA OROZCO, MANUEL GUZMÁN 27

Contaminantes orgánicos persistentes (COP) en la zona marino costera de Cañete, Perú. Mayo 2002
 Persistent organic pollutants (POP) found in the marine coastal zone of Cañete, Perú. May 2002
 RITA CABELLO, GUADALUPE SÁNCHEZ RIVAS 43

Calidad ambiental en el área marino costera de Huarmey, Perú.
 Marzo 2002
 Environmental quality in the coastal marine area off Huarmey, Peru. March 2002
 MARÍA ELENA JACINTO, RITA CABELLO, RITA OROZCO 49

Bahía de Huarmey, Ancash, Perú. Evaluación ambiental en abril 2003
 Huarmey Bay, Ancash, Perú. April 2003 Environmental assessment
 MARÍA ELENA JACINTO, NOEL DOMÍNGUEZ, RITA OROZCO 59

Hidrocarburos de petróleo en áreas marino costeras del Perú. 2004
 Petroleum hydrocarbons in marine coastal areas of Peru 2004
 RITA J. CABELLO TORRES, MARÍA E. JACINTO TAYCO 65

Instrucciones a los autores ... 75