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The main principle of the economic approach to a trophic system we propose here lies in assuming that
there is a transfer of food along a path between a prey and a predator if, for the predator, the benefits
are greater than costs of predation on this path. Conversely, if the costs exceed the benefits, there are
no flows. This trade-off, considered all along the food chains of an ecosystem, together with ecologi-
cal processes (assimilation, somatic maintenance) results in a model coupling mass balance equations
(biological constraints) and complementarity principles (Walras’ law). Here is the core of the Network
ariational inequality
Economics Approach to Trophic Systems (NEATS).

We illustrate with simple examples of ecosystems how these principles result in algebraic equations
which can be analyzed mathematically and solved numerically. We show, in a more sophisticated example
of an input/output trophic network, that they result in “affine variational inequalities”, whose solutions
can be estimated. We make explicit how the approach can be applied to address ecological questions,
concerning differences of productivity, causes of biological diversity, or the nature of controls in marine

ecosystems.

. Introduction

The idea of equilibrium and its relation to the “Balance of Nature”
re central in theoretical ecology (Egerton, 1973; Cuddington,
001). Defining an ecosystem, using an analogy with the “environ-
ent within” an organism, implies that there is some persistence

r “homeostasis” in the dynamics of a part of nature; one cannot
peak of an ecosystem when dealing about evanescent dynamics.
t the same time, however, ecosystems must be treated as complex
hanging entities.

It happens that the power and the fragility of the idea of ecolog-
cal equilibrium are due to their resonance in other scientific fields,
uch as mathematics or economics. There are at least three very
ifferent concepts of ecological equilibrium. First, equilibrium is
elated to conservation laws such as in physical sciences: a quantity
population number, species number, energy, biomass) is con-
erved, or transformed in a deterministic way, through ecological
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

rocesses (predation, assimilation, individual growth, spawning,
ispersal). It has been the objective of many ecologists to find
uch conservations laws not only in the biological processes, but
lso in the ecological data themselves, for example in population
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data (Egerton, 1973). Second, ecological equilibrium is based on the
mathematical formulation of a dynamical system, that is on differ-
ential equations, and the subsequent study of its dynamics, mainly
the description of its steady states or more generally its attractors,
or attracting basins (Scheffer and Carpenter, 2003). In that case, eco-
logical equilibrium is directly related to the mathematical stability
of ecosystems. According to a long tradition from Lotka, Volterra,
Odum, to Holling, this is the purpose of many ecological models
to address the coupling of balance-based and dynamical concepts
of equilibrium. Now ecologists assimilate balance of nature and
mathematical equilibrium, although background principles of both
concepts may be considered irreducible (Cuddington, 2001). A third
definition of equilibrium issued from economic theory has been
applied to ecological systems. It is based on a complementarity
principle, whose simplest expression is Walras’ law (Fig. 1): there
is an economic exchange between two agents when supply price
equals demand price; if there is a surplus of supply price on demand
price, there is no exchange; there are no other alternatives. The
above complementarity principle is used, for example, in the opti-
mal foraging theory (MacArthur and Pianka, 1966): as a predator
in a patchy environment seeks to forage where searching and pre-
dation costs are lower, there is a tendency to a balance between
energy costs and energy gain. Due to these different approaches, the
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

concept of ecological equilibrium is widely debated (Pimm, 1979;
De Angelis and Waterhouse, 1987); the hypothesis of intermedi-
ate disturbance (Townsend et al., 1997), which relates biological
diversity to the lack of equilibrium states in ecological systems, is a
remarkable illustration of the theoretical issues of this debate.

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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Fig. 1. Walras’ law. Demand price decreases and supply price increases with exchanged quantities. There is an economic exchange between both agents when supply price
equals demand price. If there is a surplus of supply price on demand price, there is no exchange. The remaining alternative is not relevant to economics, since it would imply
a null supply price for non-null quantities. Thus, either the flow is positive, either the surplus is positive, and only one between flow and surplus is non-null. Equilibrium is
a er Q >
o tion”.
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t the intersection of supply and demand curves. Thus, at equilibrium, we have, eith
f supply price on demand price. This alternative is called a “complementarity equa

This paper is in the continuity of a continuous exchange between
conomics and ecology to explore ecological equilibrium (Odum,
971; Hannon et al., 1991), which has been reviewed by Hannon
1997). In this regard the importance of recent works, which pro-
ose to analyze the “general equilibrium” of ecosystems (Tschirhart,
000; Finnoff and Tschirhart, 2003) by merging the input/output
pproach and the economic equilibrium approach must be under-
ined. Here we propose a Network Economics Approach to Trophic
ystems (NEATS), which, in a simple way, allows representing the
conomics of ecosystems, and we show how it addresses clas-
ical questions of bio-economics or theoretical ecology, such as
he food-web structure, the role of cannibalism, the impact of
ntra-specific competition on biological diversity, and the struc-
ure of controls in trophic webs. It is based on a trade-off for
redators between costs and benefits of predation that is density
ependent, while avoiding a restrictive definition of costs and ben-
fits.

Our approach is relevant to Network Economics (Nagurney,
993) whose principle lays in the coupling of constraints equations
such as balance equations) and complementarity equations; one

ay relate this to the coupling of Ohm’s law and Kirchhoff’s law
n an electric circuit. There are many applications of Network Eco-
omics (Nagurney, 1993) to very different research fields, such as
conomics, transportation, structural dynamics, migration, supply
hain planning, etc. In recent years, there has been an impor-
ant development of mathematical tools that allow defining and
alculating equilibriums in networks systems. Main tools are the
variational inequality” (Nagurney, 1993), and the “complementar-
ty problems” (Facchinei and Pang, 2003), which allow combining
he ingredients of economic equilibrium, i.e., balance relationships
nd complementarity.

In a network model of a food web, nodes or compartments
orrespond to species (or functional groups of species) and links
orrespond to food flows between species. At each node, occurs
mass balance equation. On each link, occurs a complementarity
rinciple.

The paper is organized as follows. We formulate in mathe-
atical terms the principles of NEATS. We examine with several

imple examples of trophic networks how NEATS allows revisit-
ng some classical problems of ecological theory such as optimal
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

oraging or cannibalism. We formulate a more realistic model
f a marine ecosystem and prove that it has an equilibrium
nd that this equilibrium is computable. We apply NEATS (1)
o analyze productivity differences in upwelling ecosystems,
2) to revisit the issue of the species coexistence, and (3) to
0, E = 0 (left) or Q = 0, E > 0 (right) where Q is exchanged volume and E is excess

explore shifting dynamics of the pelagic ecosystem of the Chilean
coast.

2. Principles of NEATS

2.1. Background

2.1.1. Mass balance equations
NEATS uses a conventional mass balance equation which

expresses the equality, inside a compartment of (1) the produc-
tion of new biomass (assimilation), and (2) the loss of biomass,
due to predation, other mortality and somatic maintenance. We
will use the following formulation. Species or functional groups of
species of the trophic network are denoted i. Biomass of species i
is denoted Bi. Flows, i.e. the amount of biomass of species i preyed
upon by species j are denoted Xij . We denote Pi the assimilated
biomass. We assume Pi = �i

∑
jXji where �i is the trophic assimila-

tion efficiency. For autotroph species, Pi = �iEi where Ei is the inflow
(energy and nutrients). A part of the loss of biomass corresponds to
the biomass consumed by other species: Qi =

∑
jXij . Other losses

Ri, corresponding to somatic maintenance, are assumed to be pro-
portional to biomass: Ri = �iBi. Then, considering that Ei /= 0 and
Xji = 0 for autotroph species i, that Xij = 0 for top predator species
and fisheries j, the mass balance equations of a marine ecosystem
is

�i(Ei +
∑

j

Xji) = �iBi +
∑

j

Xij

Rearranging this equation, we obtain:

Bi =

�i(Ei +
∑

j

Xji) −
∑

j

Xij

�i
(1)

This relationship implies constraints for trophic flows, which must
not result in negative values for biomass of prey species. Given
trophic parameters �i, Ei, a combination of flows (Xij) must be such
that, for all i, j, Xij ≥ 0 and, for all i, Bi ≥ 0.

2.1.2. Complementarity equations
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

Let us denote Fij the costs for a predator j to feed on one unit
of biomass of prey i, which corresponds to the difference between
advantages and inconveniences. Costs values are opposite to suit-
ability of predation. According to optimal foraging theory both
are usually expressed in energy terms (MacArthur and Pianka,

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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966) and resulting complementarity principle is equivalent to the
arginal value theorem (Charnov, 1976). Transfer of food along

ath ij appears as a trade-off between the energy that a predator
eeds for preying upon a prey and the energy gained by its inges-
ion. This energy gained is different according to the prey. It can be
elated to some relative preferences due to, e.g. swimming behavior,
ggregation patterns, biomass assimilation, taste, distance between
istribution areas and to prey density.

In the present version of NEATS, costs are assumed to depend lin-
arly on the biomass of both prey and predator: they are assessed
s the sum of (1) a constant term, �ij , which is related to the dis-
ance between distribution areas of prey i and predator species j; it
s also related to difficulties of handling and ingestion; (2) a nega-
ive linear term, −�iBi, expressing the easiness of predation due to
he abundance of prey Bi; (3) a positive linear term, �jBj , express-
ng intra-specific competition of predator species j; this process
s sometimes termed “predator interference” and can be formal-
zed in different ways, see for example Arditi and Ginzburg (1989).
hese assumptions ignore several other factors such as the relation-
hip between distribution areas and prey abundance. However, it is
he simplest way to represent density dependence effects on pre-
ation costs. Summarizing these assumptions, the predation costs
etween a prey i and a predator j are assumed, in this version of
EATS, to be given by

ij = �ij − �iBi + �jBj (2)

hen, equilibrium is due to the following mechanism: (1) if Fij > 0,
rey is not accessible enough; flows Xij decrease; biomass of prey Bi

ncreases; Fij costs decrease. (2) if Fij < 0, there are many accessible
rey; flows Xij increase, Bi decreases, costs Fij increase. The system
oves towards a situation where either Xij > 0 and Fij = 0, or Fij > 0

nd Xij = 0. If there are flows from i to j, there is an economic bal-
nce between advantage and inconveniences of predation. If there
s no flow, this is because the costs of predation are greater than
he advantages for the corresponding predator. It is clear that these
ssumptions imply that there is a threshold of prey biomass under
hich there is no predation; this is thus an expression of foraging

rena theory (Walters et al., 2000): a part of prey biomass is not
ccessible simply because, at low density, it is too costly for preda-
ors. The model only examines equilibrium situations but does not
epresent situations in which a predator consumes its prey until
xtinction for example.

This encompasses the mathematical definition of network equi-
ibrium. We denote K the set of admissible flows X = {Xij} which
atisfy the constraints Xij ≥ 0 and Bi ≥ 0, where Bi is given by Eq.
1). Let X∗ = {X∗

ij
} ∈ K and F∗ = {F∗

ij
} the associated predation costs.

hen X∗ is an equilibrium if it is a solution of the complementarity
quations: for all i and j, one has X∗

ij
> 0 and F∗

ij
= 0, or F∗

ij
> 0 and

∗
ij

= 0.

.2. Network equilibrium of simple trophic networks

Let us illustrate how to apply NEATS to some very simple and
ypical trophic networks (Fig. 2).

.2.1. Prey–predator
First, we consider the simplest ecological system (Fig. 2A) with

prey population i with biomass Bi, a predator population j with
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

iomass Bj and the trophic flow Xij from i to j. Mass balance
quations are (1) �iEi = Xij + �iBi and (2) �jXij = �jBj . To simplify
xpression of results, we assume that there is no intra-specific com-
etition: Fij = �ij − �iBi. Then, adding complementarity equations
ij − �iBi = 0 when flows Xij > 0, one obtains a linear system, whose
 PRESS
elling xxx (2009) xxx–xxx 3

solution is

Bi = �ij

�i

Bj = �j(�i�iEi − �ij�i)
�i�j

Xij = �i�iEi − �ij�i

�i

There is no flow (Xij = 0) when �i�iEi < �i�ij . In this case, Bi =
�iEi/�i. A minimal level of abundance is defined for prey in such a
way that if there is not enough prey, there is no predation flow, and
thus no predator. With this principle, we can represent an ecosys-
tem in which some environment factor, such as climate, affects
accessibility parameters and, due to the above rule, provokes sud-
den switches in the ecosystem dynamics.

2.2.2. A short food chain
Secondly, we consider a short food chain (Fig. 2B) with a primary

producer i and its biomass Bi, a foraging species j and its biomass
Bj , a top predator species k and its biomass Bk, the trophic flow Xij

from i to j, the trophic flow Xjk from j to k. Mass balance equations,
together with complementarity equations (still assuming no intra-
specific competition), when there are positive flows (Xij > 0, Xjk >
0) become a linear system with five unknowns and five equations:

�iEi = Xij + �iBi

�jXij = Xjk + �jBj

�kXjk = �kBk

�iBi = �ij

�jBj = �jk

Solving this system, we obtain the following expressions for
biomass and flows:

Bi = �ij

�i

Bj = �jk

�j

Bk = �k�j�iEi

�k
− �j�k�i�ij

�i�k
− �k�j�jk

�k�j

Xij = �iEi − �i�ij

�i

Xjk = �j�iEi − �j�i�ij

�i
− �j�jk

�j

All these quantities must be positive, which implies algebraic
conditions upon coefficients. The last equations allow to study the
impact of any change of a given parameter on the structure of the
network. For example, an increasing energy inflow Ei has an impact
only on top predator biomass Bk (third line of previous equation),
not on Bi (first line) and Bj (second line). This is in conformity with
conventional modeling approaches, which have shown, that with-
out intra-specific interference, an increase of primary production
has an impact on upper trophic levels, not on intermediate trophic
levels (Ginzburg and Akçakaya, 1992).

2.2.3. Cannibalism
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

In the same way, we consider a very simple network model
of an ecosystem, where cannibalism is possible (Fig. 2C). It gives
the following mass balance equations: (1) �iEi = Xij + �iBi and
(2) �j(Xij + Xjj) = Xjj + �jBj . Similarly as before, if flows Xij and Xjj

are positive, adding complementarity equations Fij = 0 and Fjj = 0

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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esults in a linear system, whose solution is

Bi = �ij�i

Bj = �jj

�j

Xij = �iEi − �i�ij�i

Xjj = 1
1 − �j

(�i�jEi − �j�i�ij

�i
− �j�jj

�j
)

Solving this linear system, provides the condition on parameters
hat allows cannibalism:

i�jEi − �j�i�ij

�i
− �j�jj

�j
≥ 0

That is: �jj ≥ �0, where

0 = �j�i�jEi

�j
− �j�j�i�ij

�j�i

.2.4. Foraging
Finally, we consider an ecosystem (Fig. 2D) with several prey

opulations i ∈ I, their biomass Bi, one predator population j, its
iomass Bj , and the trophic flows Xij between i and j. Mass balance
quations are (1) �iEi = Xij + �iBi for all i, and (2) �j

∑
iXij = �jBj .

hen, if all flows are > 0, complementarity equations (still assum-
ng no intra-specific competition) results in a linear system, whose
olutions are

Bi = �ij

�i

Xij = �iEi − �i�ij

�i

Bj =
∑

i

(
�j�iEi

�j
− �j�i�ij

�j�i

)

Optimal foraging theory (MacArthur and Pianka, 1966) is based
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

n a detailed examination of the energy costs of predation for
earch, capture and ingestion. Assuming economic principles, it
llows studying relationships between spatial structures (a patchy
nvironment) and population dynamics. With NEATS, we get a sim-
le, if rough formalism of this theory and some subsequent ones
nibalism; (D) a generalist predator; (E) a simple food web; (F) a bi layer network.

such as that of the marginal value theorem (Charnov, 1976) or the
ideal free distribution theory (Fretwell and Lucas, 1970).

2.3. Network equilibrium of input/output food webs

The previous examples are solvable algebraically, due to the
equality of the number of equations and unknowns, and the few
number of situations to observe when constraints are not satis-
fied. This approach becomes impossible for more complex systems:
we would have to examine 2n situations for a system with n com-
partments; and it is supposed that the general complementarity
problem belongs to the class of NP-problems (not computable
in polynomial time). However, the theory of Network Economics
(Nagurney, 1993) shows that in a much larger class of systems, there
are solutions and they are computable. We will show this in the case
of a more general biological system with several linked compart-
ments (Fig. 2F). We restrict the problem to “input/output” oriented
systems (loopless digraphs), i.e. the network is “oriented” between
an input part and an output part. There are no loops, for example
no cannibalism.

Recall that predation costs on a path ij are given by Fij = �ij −
�iBi + �jBj . This model includes a compartment fisheries which is
considered using exactly the same formalism as for species com-
partments. Similar to a top predator compartment, it has a cost
function, “somatic maintenance” and “mortality” coefficients. We
use the same unit, biomass, also for fisheries by considering rates
of exchanges between biomass and money. Interpretation of coeffi-
cients is quite easy: inflow Ik =

∑
jXjk is the biomass caught by the

fishery; Kk is the amount of capital owned by the fishery, that is pro-
portional to its fishing capacity (expressed in biomass currency);
pkIk is the income of fishery; ckKk is the capital costs of fishery.
One has still the balance relationship pkIk = ckKk. We assimilate
then �k = pk, the efficiency coefficient of the fishery and �k = ck

the mortality rate of the fishery.
Mass balance equations are as before, for all compartments,
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

including fisheries:

�i(Ei +
∑

j

Xji) = �iBi +
∑

j

Xij

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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And complementarity equations are

Xij > 0 ⇒ �ij − �iBi + �jBj = 0
Xij = 0 ⇒ �ij − �iBi + �jBj ≥ 0

We consider the set K of admissible flows defined in Section 2.1.2.
he equilibrium solution of the trophic network corresponds to the
olutions of an “affine variational inequality” (Nagurney, 1993) that
s simply expressed in terms of the problem parameters. This is due
o the following propositions (see Appendix A.1 for references and
roofs).

roposition 1. The set of admissible flows K is a polyhedron in the
et of flows. Moreover K is compact (closed and bounded).

roposition 2. To X = (Xij) ∈ K we associate Bi according to formula
and Fij according to formula 2. We put F(X) = (Fij). Then X → F(X)

s a linear function.

roposition 3. A vector of flows X∗ is an equilibrium state if and only
f it satisfies the “affine variational inequality”: S = F(X∗)(X − X∗) ≥ 0
or all X ∈ K , where S is the scalar product S =∑ijFij(X∗)(Xij − X∗

ij
).

roposition 4. Solution set of the above “affine variational inequal-
ty” is not empty.

roposition 5. In order to get an unique solution, it is sufficient that,
or all species �i�i = �i.

These propositions allow us to compute equilibriums using
projection” algorithms (Nagurney, 1993), or Newton-like meth-
ds (Facchinei and Pang, 2003). The last theorem allows us to
efine a “strong” equilibrium. Considering that there are few
ifferences between trophic efficiencies, strong equilibrium char-
cterizes ecosystems in which intra-specific competition decreases
ith accessibility.

. Using NEATS

.1. Productivity of upwelling systems

We apply the model of a short food chain presented in Section
.2.2 to the comparisons of upwelling ecosystems in the Humboldt
nd Benguela currents. The main characteristic of these highly pro-
uctive and variable ecosystems is the dominance of small pelagic
sh (anchovies and sardines). Two opposite situations are observed
Fig. 3); in the Humboldt ecosystem, primary production is rela-
ively moderate and pelagic fish are very abundant; in the Benguela
cosystem, primary production is very high meanwhile pelagic fish
re much less abundant. These differences are puzzling (Mackas et
l., 2006). The results of Section 2.2.2 suggest that an important
actor to be taken into account is food accessibility to explain the
isparity in relative ecosystem productivity. Thus plankton acces-
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

ibility is low in the Benguela and high in the Humboldt (which
an be related to hydrodynamic activity); pelagic fish accessibility
s low in the Benguela, medium in the Humboldt (which remains
n open question); while nutrient input is high in the Benguela and
edium in the Humboldt (which is observed). This type of coupling

ig. 3. Schematic representations of the differences of biomass in two important
pwelling ecosystems. From estimation and models by L. Shannon and J. Tam.
 PRESS
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represents an illustration of a now conventional theory of ocean
productivity (Bakun, 1996).

3.2. Competition and diversity

Considering a bi-layered network (Fig. 2E) may allow addressing
in an original way the question of the coexistence of species. With
only two trophic levels, mass balance equations are: �iEi =∑jXij +
�iBi for prey species, �j

∑
iXij = �jBj for predator species, which

results in some simplification of the equations (Appendix A.2). We
build a simulation experiment in which, equilibrium is computed
for an ecosystems comprised of 8 prey species and 50 predator
species, with increasing values of the predator density dependence
parameter �j . It is set up as follows. For fixed values of a parameter
of the intra-specific competition, � = 0, 0.02, 0.04, 0.06, 0.08, 0.1,
we repeat many times times the sequence: (1) randomly choose the
intra-specific parameter �j ∈ [�, 2�]; (2) randomly choose other
parameters Ei ∈ [1000, 2000], �i ∈ [1, 2], �i ∈ [0.5, 1], �j ∈ [0.1, 0.2],
�j ∈ [0.2, 0.4], �ij ∈ [0.1, 0.3], �i ∈ [0.1, 0.2], �ij ∈ [0.1, 0.3]; (3) com-
pute the resulting equilibrium, get the number of each species
Ni and its proportion pi = Ni/N, with N =

∑
iNi. Then we observe

how resulting diversity indices such as: S the number of preda-
tor species with positive abundance Ni > 0, the Shannon index
H = −∑ipi Log(pi), the Simpson index 1/

∑
ip

2
i
, depend on the

parameter of intra-specific competition.
The results are given in Fig. 4. We observe that without any

intra-specific competition, (� = 0) the number of predator species
is equal to the number of prey. This is Gause’s principle in its crude
form. For each prey, the most efficient of its predators survives: this
latter puts the biomass of prey at a level which renders them inac-
cessible to other predators. In a very robust manner, we observe an
increase of biodiversity related to the level of intra-specific compe-
tition: as in the mathematical studies of Lotka Volterra equations,
the main factor explaining diversity of predators is the intra-specific
competition. However, while the conventional theory predicts that
particular relationships between inter- and intra-specific compe-
tition allow the coexistence of several competitors, our model
suggests that very low levels of intra-specific competition are suf-
ficient to allow coexistence of several competitors. This is not
surprising from a mathematical point of view: in the present mod-
eling approach, intra-specific competition is a limiting factor for the
biomass of a given predator, and thus when production of prey is
abundant, the most efficient predator leaves some available food
for other predators.

3.3. Trophic controls and keystones in the pelagic ecosystem of
the Chilean coast

In this part, NEATS is applied to the study of the coastal pelagic
system of Chile based on a previous study by Neira et al. (Neira and
Arancibia, 2004; Neira et al., 2004). The structure of this system is
plotted in Fig. 5. All parameters needed by NEATS, collated from
(Neira and Arancibia, 2004; Neira et al., 2004), are given in Table 1.
Biomass Bi, energetic input Ei, trophic efficiency �i and other mor-
tality parameter �i are classical output of mass balance models. To
set accessibility parameters, intra-specific parameters and preda-
tion cost parameters, we proceed as follows. The complementarity
relationship (when there is a flow Xij > 0 then predation costs are
such that �ij = �iBi − �jBj) allows us to determine �ij using the esti-
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

mated biomass values. More hypothetically, it has been assumed
that the system is not far from its “strong” equilibrium, which
is easily computable using the relationship between parameters
�i�i = �i, meaning that accessibility and intra-specific competition
are related. Finally, the accessibility parameter has been assumed
lower for intermediate trophic level species (gregarious behavior).

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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.3.1. Analysis of controls
A sensitivity analysis of the impact of input parameters allows

s to reconsider the puzzling question of trophic controls (Hairston
t al., 1960; Slobodkin et al., 1967; Fretwell, 1977; Oksanen et al.,
981; Fretwell, 1987) in the context of marine ecology (Cury et al.,
000). To address this question with NEATS, equilibrium states of
rophic networks have been assessed according to specific changes
f predation costs.

To represent the dynamics induced by a bottom–up control,
redation costs parameters �ij for grazers j of phytoplank-
on or macrobenthos i have been multiplied successively by
.5, 0.6, 0.7, . . . , 2.0. The results are presented in terms of food
ransfer along the food chain (Fig. 6). When the accessibility of
hytoplankton is high (top), its biomass is at a medium level
nd the resulting competition is detrimental to demersal fish and
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

esopelagics. When the accessibility of phytoplankton is low (bot-
om), its biomass is at a higher level, the macro-zooplankton is
ominant in the zooplankton community and small pelagic fish
isappear. Between these situations a shift occurs in which small
elagic fish supplant zooplankton species, due to their lower intra-

ig. 5. Trophic flows in the pelagic ecosystem of the Chilean coast. Diameters of disks
nd trophic flows. Abbreviations are phytoplankton, PHYTO; macrobenthos, MBENTHOS;
ooplankton (euphausiids), MACRO ZOO; jellies (salps and jellyfishes), JELLY; cephalopo
ACK; demersal fish I (benthic feeders species), DEM I; mesopelagics, MESO PEL; pelagi

ake, L HAKE; pelagics II (large-sized pelagic fish like swordfish), PEL II; demersal fish II (
y-axis, mean values plus or minus standard deviations of S (number of species),

specific competition. This gives an indication about the behavior
of the system and its ability to represent shifting dynamics. We
give in the Supplementary Material file a more complete view of
the resulting dynamics. This is confirmed by Fig. 7 (left panel),
which represents the evolution of biomass of all species. We
may observe a shift between a regime where microzooplankton,
jellies, sardine and anchovy are dominant when phytoplank-
ton biomass is low, and a regime where macro-zooplankton,
mesopelagics and demersal fish are dominant when phytoplank-
ton biomass is high. These two alternative food chains are related
to differences in the function of zooplankton species in the food
web.

We have represented the top–down control hypothesis by
changing predation costs parameters �ij for fisheries i. We mul-
tiply them successively by 0.8, 0.85, . . . , 1.25. We observe in
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

Figs. 7 and 8 (right panel) that the main characteristics of the
dynamics are the consequence of the competition of fisheries with
all the top predator species of the ecosystem (chondrichtyans, dem-
ersal fish I and II, pelagic fish II, large hake, sea lion and sea birds).
See also the Supplementary Material file.

and thickness of arrows are related to biomass of corresponding compartments
meso-zooplankton (copepods), MESO ZOO; microzooplankton, MICR ZOO; macro-
ds, CEPHAL; chondricththyan, CHONDRI; small hake, S HAKE; horse mackerel, H
cs I (medium-sized pelagic fish like hoki), PEL I; common sardine, SARDINE; large
pelagic feeders species), DEM II; sea birds (penguins, pelicans, cormorants), BIRDS.

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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Fig. 6. Simulation of a bottom–up control. Top: high accessibility of phytoplankt

.3.2. Keystone species
We illustrate how this sensitivity analysis method can be applied
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

o the analysis of keystone species in an ecosystem. For each species
, we systematically change the coefficients of predation costs: we
ncrease �ij and we decrease �ki, for all other species j (prey of i)
nd k (predators of i). Then we observe the variations of biomass Bk

ccording to the variation of Bi; when Bi is small and �Bk/�Bi is
macrobenthos. Bottom: low accessibility of phytoplankton and macrobenthos.

important for several species k, we may consider that i is a keystone
species (Power et al., 1996; Libralato et al., 2006).
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

We may observe how the network equilibria change according to
changes of the environment of meso-zooplankton (Fig. 9, left panel).
When environment is very favorable, meso-zooplankton is the only
grazer of phytoplankton; it is preyed by macro-zooplankton from
which starts most of the food web. There is a shift when envi-

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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Fig. 7. For all plots: on x-axis, coefficients, 0.5, 0.7, . . . , 1.4, 2.0 or 0.8, 0.82, . . . , 1.11, 1.2
of phytoplankton and macrobenthos is multiplied by coefficients. Left panel: bottom–up

Table 1
Values of parameters: � , trophic assimilation efficiency; �, somatic maintenance
coefficient; �, accessibility; �, intra-specific competition; E, energy input; B, refer-
ence biomass. Most of parameters values are issued from Neira et al. (2004). See
Appendix A.3 for details.

Compartment � � � � E (t/km2) B (t/km2)

Phytoplankton 2.0 16.89 0.21 8000 302.50
Zooplankton I 0.5 96.87 0.23 0.11 11.62
Zooplankton II 0.29 0.04 0.20 0.05 14.09
Zooplankton III 0.41 0.01 0.26 0.10 26.35
Jellies 0.1 0.05 0.24 0.1 44.70
Macrobenthos 0.25 0.50 0.23 25 2.0
Anchovy 0.1 0.94 0.26 0.02 8.35
Common sardine 0.1 1.10 0.27 0.02 11.59
Mesopelagics 0.2 1.20 0.29 0.05 13.26
Horse mackerel 0.05 0.68 0.29 0.01 13.79
Hake (large) 0.11 0.13 0.25 0.02 4.28
Hake (small) 0.30 0.56 0.26 0.08 4.48
Pelagics I 0.1 0.35 0.21 0.02 13.38
Demersal fish I 0.2 0.26 0.23 0.04 1.68
Demersal fish II 0.2 0.24 0.26 0.05 0.78
Chondricththyan 1.3 0.03 0.23 0.30 0.43
Pelagics II 0.4 0.95 0.25 0.10 0.31
Cephalopods 0.5 1.53 0.24 0.12 1.63
Sea lion 0.02 0.15 0.01 0.09
Sea birds 0.025 0.5 0.01 0.06
Fishery 0.3 0.08 0.01 12.00
5; on y-axis, the biomass B(k) in t/km2. Right panel: bottom-up control accessibility
control; fishing costs for fisheries are multiplied by coefficients.

ronment starts being less favorable for meso-zooplankton; then
starts a competition with microzooplankton which causes a slight
decline of macro-zooplankton biomass, under a threshold at which
its predators (like hake) stop preying on it and disappear. With
a more difficult environment for meso-zooplankton, sardine and
anchovies biomass increases at a level which is sufficient to sustain
the whole food chain: they become prey of hake and other preda-
tors, which due to their high intra-specific competition, prefer them
to macro-zooplankton. This suggests that meso-zooplankton corre-
sponds to the definition of a keystone species: it has a relatively low
biomass, and its impact on species distant on the food chain is high;
this is due to its indirect control upon macro-zooplankton.

Jellies abundance is often considered as an indicator of the
health of the ecosystem, their abundance being related to strong
perturbation resulting from climate changes or over exploita-
tion (Mills, 2001; Sommer et al., 2002; Lynam et al., 2005;
Lynam et al., 2006). The present approach contributes to under-
standing the ecosystem effects that determine their abundance.
We observe in the output of the model that Jellies (Fig. 9,
right panel) have an important negative effect on zooplankton
species. Their competition with the compartment demersal fish
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

II (pelagic feeders species) is strong, but indirect; observing the
structure of trophic network, the key mechanism appears to
be the control of meso-zooplankton by jellies: at a given level
predation by jellies puts meso-zooplankton at too low a level
for being preyed on by mesopelagics and then suppresses the

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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Fig. 8. Simulation of a top–down control. T

bove food chain (mainly demersal fish II) that preys on meso-
ooplankton.

Observing together the effects of changing the quality of life
or sardine and anchovy (Fig. 10) is an illustration of the wasp-
aist control (Cury et al., 2000; Bakun, 2006; Jordan et al., 2005).
hanging their environment through the change of their accessibil-
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

ty coefficient has a very important effect on most species. Anchovy
nd sardine have similar effects on almost all other species. They
oth have a negative top-down effect on zooplankton and a positive
ottom-up effect on the upper trophic levels (demersal fish, small
ake, sea birds and fishery) We can also observe their competition
gh fishing costs. Bottom: low fishing costs.

and the abrupt collapses of anchovy when environment starts being
favorable for sardine, and vice-versa, giving a simple representa-
tion of synchronies commonly observed in upwelling ecosystems
(Schwartzlose et al., 1999).

4. Discussion
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

We have applied the concept of economic equilibrium to the
study of trophic networks. For this study, seminal works from R.
McArthur, B. Hannon, E. Charnov, and S. Tshirhart have inspired us.
We have shown how the Network Economics approach of A. Nagur-

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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oefficients; the accessibility of its preys is divided by coefficients. Left panel: effec
anel: effects of changing environment of jellies on the biomass of other species.

ey through the variational inequality can provide an elegant way
o formulate and resolve the equations defining the equilibrium.

e have shown that the equilibrium of trophic networks with a
easonable number of compartments leads to a mathematical prob-
em which is computationally tractable. Finally, we have illustrated
hrough the example of the pelagic system of the Chilean coast how
his approach provides new insights on classical problems such as
he nature of controls, or the identification of keystone species.

Improvements of NEATS are obviously necessary. We have to
mprove the formulation using more general cost functions present-
ng non-linearities, and more realistic representation of fisheries.

e have to improve the approach itself, (1) with a more complete
xploration of the set of solutions, (2) by performing statistical anal-
sis of the solutions randomly generated with small variations of
arameters, and (3) by developing a dedicated method for param-
ters estimations, calibration and model validation.

A simple analysis of productivity differences between upwelling
cosystems allows us to emphasize the role of accessibility costs in
he predation process. Accessibility can be related to the shape of
he shelf: a narrow shelf would favor encounters since it reduces
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

he spatial extent of predators and prey distribution. Accessibil-
ty can also be related to hydrodynamic activity and the existence
f mesoscale structures that could favor encounter probability
Weimerskirch et al., 2004). This should contribute to the debate
bout the effects of climate change on the structure of marine
-axis, the biomass B(k) in t/km2. The accessibility of tested species is multiplied by
hanging environment of meso-zooplankton on the biomass of other species. Right

ecosystems, mainly though the stratification process. It is currently
assumed that global climate change will modify precipitations pat-
terns, increase stratification and decrease in winter mixing (Young
and Holt, 2007) and ultimately have an effect on plankton dynamics
(Bopp et al., 2005). Our results suggest that such predicted patterns
could be envisaged without any a-priori (e.g. any causal relation-
ships).

We have shown that NEATS provides a new insight in the ques-
tion of the coexistence of species; the Gause’s competitive exclusion
principle (Gause, 1936) states that only one predator species sur-
vives when several “similar” predator species compete for one prey
species. If it is valid, why are there so many plankton species feed-
ing on the same resource pool (Hutchinson, 1961; Elliott et al.,
2001)? Why are there so many tree species in a similar tropical
environment (Hubbell, 1997)? Let us remark that, according to the
tradition initiated by Gause himself, most of the theoretical debate
has been supported by the analysis of equilibrium states of Lotka
Volterra like models (Huston, 1979; Loreau et al., 2001; Scheffer
and van Nes, 2006). NEATS emphasizes the importance of intra-
specific competition between predators as a factor of biological
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

diversity. It may provide a different insight on the plankton paradox.
It leads to consider that, due to some spatial heterogeneity, intra-
specific competition of plankton species in the use of nutrients
could be a key determinant of plankton dynamics. Going further,
we may examine how this result could explain what is called the

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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ffects of changing environment of sardine on the biomass of other species.

asp-waist pattern: in upwelling pelagic systems, there are few
ntermediate small pelagic species representing a high biomass
Bakun, 1996; Cury et al., 2000). Within our framework, we can
ttempt to relate these features to the propensity of pelagic fish
o schooling. There have been many different ways to tackle the
chooling question (Fréon and Dagorn, 2000). Here, we consider

hierarchy of prey–predator systems. At the plankton level (a
ommon pool of resources, many plankton species): intra-specific
ompetition may be important for plankton. At the pelagic level
many plankton species, few pelagic species): inter-specific compe-
ition between small pelagic fish may be predominant; schooling
s interpreted as a limitation of intra-specific competition. At the
arnivorous fish level (few small pelagic species, many carnivorous
sh species): intra-specific competition may be more important.
hus, predation would be a factor of biological diversity: a preda-
or limits the biomass of its prey. There are several predators due
o intra-specific competition of predators and several prey due to
ifferences in predation costs for predators. We have represented
ere the most common acceptation of the importance of top–down
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
doi:10.1016/j.ecolmodel.2009.02.008

ontrols in the maintenance of biological diversity.
In the case of the Chilean coastal ecosystem, the analysis of

imulations using NEATS gives an insight into the structure of a
arine ecosystem, taking into account, for a predator species, the

osts/advantages balance of predation, knowing that it depends on
y-axis, the biomass B(k) in t/km . The accessibility of tested species is multiplied
of changing environment of anchovy on the biomass of other species. Right panel:

prey abundance. The approach emphasizes the role of predation
costs for a predator, the accessibility of prey, and intra-specific com-
petition. These basic mechanisms allow us to replicate common
observations of prey switching in nature.

The actual strength of NEATS consists in addressing, in a direct
way, two important issues of ecological modelling. First, it allows
representing discontinuous dynamics, shifts and collapses. Thus, it
may in some instances appear more appropriate than conventional
dynamical systems which often produce dynamical solutions that
are too smooth. Secondly, it allows carrying out models of “inter-
mediate dimensionality”. Mathematical theories are adequate to
represent small dimension systems (less than 4 degrees of freedom)
by dynamical system models, while very large dimension systems
(millions of degrees of freedom) can be represented by tools of
statistical physics. However, specificities of ecosystems imply to
consider models ranging from 20 to 100 degrees of freedom, pre-
senting discontinuous dynamics. With NEATS, we propose a model
of intermediate complexity, allowing to define compartments with
an adequate balance between simplicity and realism: the formal-
k Economics Approach to Trophic Systems. Ecol. Model. (2009),

ism is simple and natural, over-parameterization is avoidable, and
computation is tractable. In addition, simulation results show that
NEATS is able to tackle puzzling questions regarding the function-
ing of marine ecosystems such as the nature of their controls and
the determination of keystone species.

dx.doi.org/10.1016/j.ecolmodel.2009.02.008
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ppendix A

.1. Mathematical proofs

We successively prove the following propositions:

roposition 1. The constrained set K is compact.

One has K = {(Xij)|Xij ≥ 0, �i(Ei +
∑

jXji) −
∑

jXij ≥ 0}. These
nequalities being linear, this defines a closed polyhedron. Let us
rove that it is compact, i.e. bounded. We have

∑
jXij ≤ �iEi for

utotroph species and
∑

jXij ≤ �i

∑
jXji for other species. Thus,

utting A the set of autotroph species,

ij

Xij ≤
∑
i ∈ A

�iEi +
∑
i/∈A

�i

∑
j

Xji

All �i for i /∈ A are < 1; thus less than a value � < 1; moreover
ji = 0 for i ∈ A. Finally:

ij

Xij ≤
∑
i ∈ A

�iEi + �
∑

ij

Xji

That is:

ij

Xij ≤

∑
i ∈ A

�iEi

1 − �

This joined to Xij ≥ 0 implies that K is bounded; as it obviously
losed, it is compact.

roposition 2. Let F(X) = (Fij). Then X → F(X) is a linear function.

We have (using that Ej = 0 for predator species j):

ij = �ij − �iBi + �jBj = �ij − �i
1
�i

⎛
⎝�i

⎛
⎝Ei +

∑
j′

Xj′i

⎞
⎠−

∑
j′

Xij′

⎞
⎠

+ �j
1
�j

(
�j

∑
k′

Xk′j −
∑

k′
Xjk′

)
=
∑

i′j′
Mij,i′j′ Xi′j′ + Nij

ith

Mij,i′j′ = �i

�i
ıi,i′ − �i�i

�i
ıi,j′ − �j

�j
ıj,i′ + �j�j

�j
ıj,j′

Nij = �ij − �i�iEi

�i

roposition 3. X∗ = (X∗
ij
) ∈ K is an equilibrium if and only if

(X∗).(X − X∗) ≥ 0 for all X = ∈ K .

roof (Only if part). Let X∗ ∈ K an equilibrium state. Let S =
(ij)|X∗

ij
= 0}. Then we have F∗

ij
= 0 for (ij) /∈ S and F∗

ij
≥ 0 for (ij) ∈ S.
Please cite this article in press as: Mullon, C., et al., NEATS: A Networ
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e deduce:

(X∗)(X − X∗) =
∑
(ij) ∈ S

F∗
ij(Xij − X∗

ij) +
∑
(ij)/∈S

F∗
ij(Xij − X∗

ij) =
∑
(ij) ∈ S

F∗
ijXij ≥ 0

Thus, X∗ is a solution of the variational inequality. �
 PRESS
elling xxx (2009) xxx–xxx

Proof (If part). Now, suppose that X0 is not an equilibrium. Then,
either (1) there exists (i′j′) such F0

i′j′ < 0, or (2) there exists (i′j′) such

F0
i′j′ > 0 and X0

i′j′ > 0.

First possibility: there exists (i′j′) such F0
i′j′ < 0; as F0

i′j′ = �i′j′ −
�i′ Bi′ , we have Bi′ > 0. Then, we consider a state X such that Xi′j′ =
X0

i′j′ + 	 and Xij = X0
ij

for (ij) /= (i′j′). For 	 small enough such a state is
in K: slightly diminishing the predation of j′ diminishes its biomass,
but leaves it positive. And we have∑

ij

F0
ij (Xij − X∗

ij) = F0
i′j′ (Xi′j′ − X0

i′j) = −F0
i′j′	 < 0

Thus variational inequality is not verified.
Second possibility: there exists (i′j′) such F0

i′j′ > 0 and X0
i′j′ > 0.

We prove that this is impossible with a recurrence on the distance
of j′ to the way out (i.e. the top predator level). If j′ is a top preda-
tor, we consider a state X such that Xi′j′ = −	X0

i′j′ and Xij = X0
ij

for
(ij) /= (i′j′). The inflow of j′ is smaller, but the corresponding biomass
of j′ is still positive, for values of 	 < 1. Just as before it is clear that
X provides a counter example to the variational inequality. Now,
suppose that this part of the theorem has been proven for all links
at a distance to the way out less than that of i′j′. We consider a
state with Xi′j′ = 	X0

i′j′ and all Xij = 	X0
ij

for species j = j′ or species
j upper than j′ in the trophic chain. Then X ∈ K: for species upper
than j′, inflow and outflow are multiplied by 	, thus biomass too;
it remains positive. For species lower than j′, inflow and outflow
do not change, thus biomass too. For j′, inflow remains the same,
while outflow decreases, thus biomass increases and is still posi-
tive. We use the recurrence hypothesis: in the upper part, either
X0

ij
= 0, either F0

ij
= 0, and we shows that the variational inequality

is not verified∑
ij

F0
ij (Xij − X0

ij ) =
∑

ij,j�j′

F0
ij (Xij − X0

ij ) + F0
i′j′ (Xi′j′ − X0

i′j′ )

+
∑
ij,j	j′

F0
ij (Xij − X0

ij )

=
∑

ij,j�j′

0 + (	 − 1)F0
i′j′ X

0
i′j′

+
∑
ij,j	j′

(	 − 1)F0
ij X

0
ij = (	 − 1)F0

i′j′ X
0
i′j′ < 0 �

Proposition 4. Solution set of the variational inequality is not empty.

Proof. F is linear, hence continuous and K is compact. Then the
theorem classically results from Brouwer’s fixed point theorem
(Nagurney, 1993, p. 14). �

Now let us prove a theorem giving specific condition for the
matrix M being definite-positive, that is such computation of equi-
librium has good convergence properties.

Proposition 5.
∑

ij,i′j′ Mij,i′j′ XijXi′j′ > 0 for all Xij if �i�i = �i for all
species i.

Put Ii =
∑

jXji and Oi =
∑

jXij we have∑
ij,i′j′

Mij,i′j′ XijXi′j′ =
∑

i

(
�i

�i
O2

i + �i�i

�i
I2
i −
(

�i�i

�i
+ �i

�i

)
IiOi

)
∑

k Economics Approach to Trophic Systems. Ecol. Model. (2009),

=
i

�i
(�iOi + �i�iEi − (�i�i + �i)IiOi)

=
∑

i

1
�i

(�iIi − Oi)(�iIi − �iOi)
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f �i�i = �i; then

ij,i′j′
Mij,i′j′ XijXi′j′ =

∑
i

�i

�i
(�iIi − Oi)

2 ≥ 0

.2. Specific formulas for the model of competitive exclusion

In this specific case, we have

ij =
∑

i′j′
Mij,i′j′ Xi′j′ + Nij

ith Mij,i′j′ = ıjj′ �j/�j + ıii′ �i/�i and Nij = �ij − �i�iEi/�i. Then,
e may use a classical result from variational inequality theory

Nagurney, 1993)[p. xxx]. M being obviously a symmetric matrix,
ne has: equilibrium is the solution of the following quadratic pro-
ram: find X ∈ K which minimizes f (X) = (1/2)XT MX + NT X . F is the
radient of f, and the derivative of F, that is matrix M is symmetric:
ij,i′j′ = Mi′j′,ij . More over, the matrix M is semi-definite positive:

ij,i′j′
Mij,i′j′ SijSi′j′ =

∑
ij,i′j′

(
ıjj′

�j

�j
+ ıii′

�i

�i

)
SijSi′j′

=
∑

j

�j

�j

⎛
⎝∑

j

Sij

⎞
⎠

2

+
∑

i

�i

�i

(∑
i

Sij

)2

≥ 0

This monotonicity ensures the convergence of the modified pro-
ection algorithm we use (Nagurney, 1993, p. 57).

.3. Parameterization

Table 1 has been obtained in the following way. Biomass Bi,
ows Xij , energetic input of autotroph species Ei, trophic assimi-

ation efficiency �i, natural mortality rate �i are the results of a
reliminary mass balance trophic model. Intra-specific competi-
ion �i is related to gregarious (schooling) behavior, thus at a lower
alue for mid trophic species (anchovies, sardines). According to
he “strong equilibrium assumption”, we have �i = �i�i. And using
he complementarity assumption, we have �ij = �iBi − �jBj .

ppendix B. Supplementary Data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.ecolmodel.2009.02.008.
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