INFORME SOBRE EL PRONÓSTICO DE EFECTOS DE ENOS SOBRE LAS CONDICIONES OCEANOGRAFICAS FRENTE A LA COSTA PERUANA EN BASE A FORZANTES DEL PACIFICO ECUATORIAL Y SUDESTE

Abril 2021

Carlos Quispe, Jorge Tam, Cinthia Arellano, Adolfo Chamorro, Dante Espinoza, Carlos Yván Romero y Jorge Ramos

LABORATORIO DE MODELADO OCEANOGRAFICO, ECOSISTEMICO Y DEL CAMBIO CLIMATICO (LMOECC)

1. Resumen

Usando datos hasta abril 2021, se calcularon medias móviles centradas en marzo (trimestre FMA) de los indicadores de impactos de ENOS: el Índice del Anticiclón del Pacífico Sur (IAPS) presentó una condición neutra y se mantuvo desplazado al norte de su posición habitual, el Índice Térmico Costero Peruano (ITCP) presentó una condición fría, el Índice del Área de Afloramiento (IAA) presentó una condición media y el Índice de Clorofila Superficial presentó una condición alta.

Según el modelo oceánico se pronostica la llegada en mayo de una Onda Kelvin Ecuatorial (OKE) fría a Sudamérica. Asimismo, entre fines de mayo e inicios de junio se espera la llegada de dos ondas: una OKE fría (modo 2) y de una OKE cálida (modo 1). En junio, se espera la llegada de una OKE fría (modo 1), y en julio la llegada de otra OKE cálida (modo 2). El análisis de Ondas Atrapadas a la Costa (OAC) identificó la propagación de una OAC fría frente a la costa del litoral peruano a inicios de abril y de otra OAC cálida a fines de abril 2021.

Se usaron 2 modelos de pronóstico de efectos térmicos de El Niño y la Oscilación del Sur (ENOS) frente a la costa peruana y la variable pronosticada fue el Índice Térmico Costero Peruano (ITCP): el modelo empírico basado en el volumen de agua cálida ecuatorial y el Anticiclón del Pacifico Sur, pronostica condiciones neutras del ITCP entre mayo y agosto 2021, pero valores negativos del ITCP. Por otro lado, el modelo acoplado océano-atmósfera de complejidad intermedia basado en forzantes del Pacifico Ecuatorial Tropical pronostica condiciones frías del ITCP durante mayo-junio 2021, y condiciones neutras durante julio-agosto 2021, es decir una tendencia hacia las condiciones neutras.

2. Indicadores oceanográficos y atmosféricos del Pacífico Sudeste.

Índice del APS (IAPS)

Se usó el Índice del APS (IAPS) para caracterizar la intensidad del Anticiclón del Pacífico Sur (APS), el cual se calculó mediante la media móvil trimestral de la anomalía de la presión atmosférica (hPa) mensual máxima en el núcleo del APS con datos de la base de datos Reanálisis NCEP/NOAA (Kalnay et al. 1996). El IAPS fue clasificado en 3 condiciones: débil, neutro e intenso (Fig. 1a). Durante el trimestre FMA 2021 el IAPS (+0.8) presentó una condición neutra.

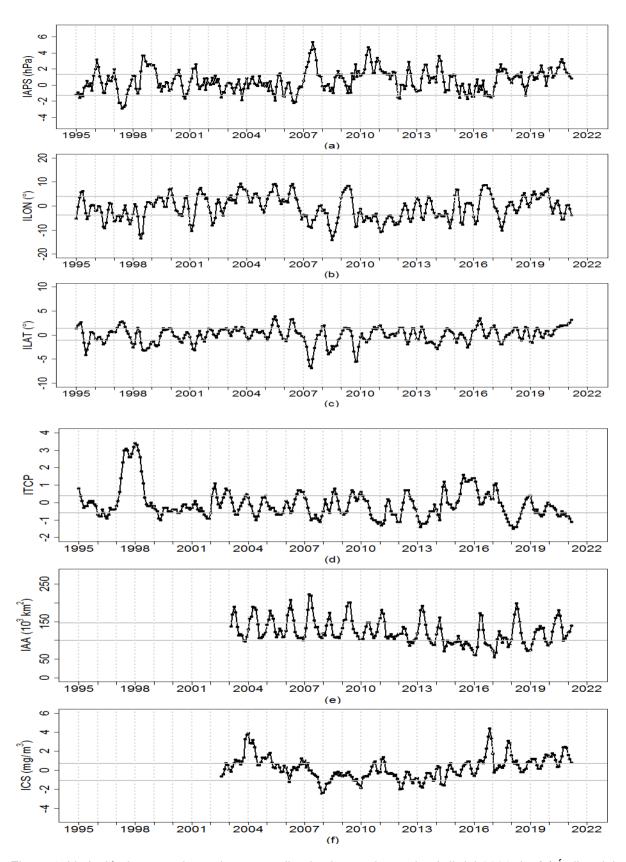


Figura 1. Variación interanual con datos actualizados hasta el mes de abril del 2021 de: (a) Índice del APS (IAPS), (b) Índice de desplazamiento longitudinal del APS (ILON), (c) Índice de desplazamiento latitudinal del APS (ILAT), (d) Índice Térmico Costero Peruano (ITCP), (e) Índice del área de afloramiento (IAA) y (f) Índice de Clorofila a Superficial (ICS).

Índices de la posición del APS (ILON e ILAT)

Se usaron los índices de posición longitudinal (ILON) y latitudinal (ILAT) del APS para caracterizar la posición del núcleo del APS, los cuales se calcularon mediante la media móvil trimestral de las anomalías de la posición longitudinal y latitudinal de la presión atmosférica mensual máxima en el núcleo del APS con datos del Reanálisis NCEP/NOAA (Kalnay et al. 1996). Valores positivos (negativos) de los índices ILON (°) e ILAT (°) representan un desplazamiento al este y al norte (al oeste y al sur) del núcleo del APS, respectivamente. Durante el trimestre FMA 2021 los índices ILON e ILAT presentaron valores de -3.8 y +3.16 respectivamente, indicando que el núcleo del APS, en promedio, se mantuvo desplazado al norte de su posición habitual. (Fig. 1c y 1b).

Índice Térmico Costero Peruano (ITCP)

Se usó el Índice Térmico Costero Peruano (ITCP) (Quispe-CCalluari, et al. 2018) para caracterizar la variabilidad interanual oceánica frente a la costa peruana, el cual se calculó mediante la media móvil trimestral de la primera componente principal de las Anomalías de Temperatura Superficial del Mar (ATSM) de las aguas costeras a partir de la base de datos de Reynolds (2007), que explicó el 87.7 % de la varianza. El ITCP fue clasificado en 3 condiciones: frío, neutro y cálido (Fig.1d). El ITCP tiene que persistir al menos 3 trimestres consecutivos por arriba (abajo) del umbral para ser categorizado como un Periodo Cálido (Frío).

Durante el trimestre FMA 2021, el valor del ITCP (-0.8) presentó una condición fría. El ITCP ha presentado 6 trimestres consecutivos (SON, OND 2020, NDE 2020-21, DEF 2020-21, EFM y FMA 2021) con valores negativos por debajo del umbral, lo cual indicó la ocurrencia de un Periodo Frío en el Ecosistema de Afloramiento Peruano. Por otro lado, el valor del Índice Oceánico de El Niño (ONI) fue -0.8 en el trimestre FMA 2021, lo cual según criterio de la NOAA indica la ocurrencia de un "Episodio La Niña" en el Océano Pacífico Tropical desde el trimestre JAS 2020, debido a que el ONI ha registrado ocho trimestres consecutivos con valores por debajo del umbral (-0.5°C).

Índice del área de afloramiento (IAA)

Se calculó el Índice del Área de Afloramiento (IAA) para caracterizar el área costera limitada por el frente térmico (en 10³ km²) entre los 05°S y 14°S en la franja de 300 km frente al litoral, y puede ser empleado como un indicador del avance o repliegue de las aguas del afloramiento costero. Este indicador ha sido desarrollado en base al frente térmico (Romero et al. 2014) construido a partir de datos de TSM satelital de nivel 4 (Multiscale UltraHigh Resolution MUR, JPL-NASA) a 1 km de resolución. El IAA fue clasificado en 3 condiciones: baja, media y alta. Durante el trimestre FMA 2021, el IAA presentó un valor asociado a la condición media (138.9 km²) (Fig. 1e).

Índice de Clorofila a Superficial (ICS)

Para el análisis de la clorofila-a superficial se utilizó información proveniente del satélite SeaWIFS (1997-2010) y del satélite MODIS corregido siguiendo la metodología de Demarcq y Benazzouz (2015) con una resolución espacial de 4 km dentro de los 100 km a la costa y los 4°S - 16°S. Se construyó una climatología tomando en cuenta información del 1998 al 2015 y se obtuvieron las anomalías promedio de la clorofila-a superficial (mg.m⁻³). El ICS se calculó como la media móvil trimestral de las anomalías promedio de la concentración de clorofila-a superficial (mg.m⁻³) mensualmente (Espinoza et al. en prep.). El ICS fue clasificado en 3 condiciones: baja, media y alta. Durante el trimestre FMA 2021, el ICS presentó una condición alta (+0.82) (Fig. 1f).

3. Pronóstico de ondas Kelvin ecuatoriales y propagación de Ondas Atrapadas a la Costa

Con el fin de pronosticar la propagación de las Ondas Kelvin Ecuatoriales (OKE) hacia el Pacífico Oriental Ecuatorial y las Ondas Rossby (OR) hacia el Pacífico Occidental Ecuatorial, se simularon las ondas Kelvin y ondas Rossby en el Pacífico Tropical, siguiendo la metodología de Illig et al. (2004) y Dewitte et al. (2002), usando como forzante vientos NCEP actualizados hasta el 18 de mayo 2021 (Kalnay et al. 1996). El pronóstico de las OKE hasta el 20 de julio 2021 se realizó con anomalías del esfuerzo del viento igual cero, y para el cálculo de las anomalías se usó el periodo 1986-2015. La correlación entre los valores de nivel del mar observado y pronosticado en el Pacífico Sudeste fue significativa (r = 0.69, p < 0.05) para el periodo 1993-2008 (Quispe et al. 2014). Se graficó la contribución de los modos baroclínicos 1 (flechas contínuas) (Fig. 3) y modo 2 (flechas discontínuas) (Fig. 4) de las OR en 3°-5°S y OKE a las anomalías del nivel del mar (cm) en el Pacifico Ecuatorial y la contribución conjunta de los modos baroclínicos 1+2 de las OKE (Fig. 2). Los valores positivos corresponden a OKEs de hundimiento "cálidas" (flechas negras), y los valores negativos corresponden a OKEs de afloramiento "frías" (flechas blancas). Con el fin de mostrar al paso de Ondas Atrapadas a la Costa (OAC) de hundimiento "cálidas" (flechas negras) y afloramiento "frías" (flechas blancas) frente a la costa peruana asociadas a la llegada de las OKEs, se empleó las anomalías del nivel del mar satelital, filtradas frente a la costa peruana, obtenidas de la base de datos de Copernicus Marine Environment Monitoring Service (CMEMS).

Figura 2. Diagrama Hovmöller longitud-tiempo (izq.) de Ondas Kelvin **Ecuatoriales** simuladas (contribución conjunta de los modos baroclínicos 1+2 a las anomalías del nivel del mar en cm) en el Pacifico Ecuatorial (0°N). Se presentan las **OKEs** de hundimiento "cálidas" (flechas negras), las OKEs afloramiento "frías" (flechas blancas), inicio pronóstico del (línea horizontal discontinua). Diagrama Hovmöller (der.) de Ondas Atrapadas a la Costa observadas (Perú) en cm con el paso de OACs de hundimiento "cálidas" (flechas negras) v OACs de afloramiento "frías" (flechas blancas). La longitud de ambos diagramas no están a la misma escala.

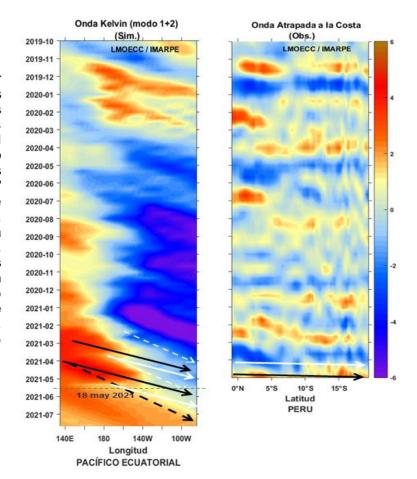


Figura 3. Diagrama Hovmöller longitudtiempo de Ondas Rossby simuladas (3°-5°S) y de Ondas Kelvin Ecuatoriales simuladas de modo baroclínico 1 (líneas continuas) en el Pacifico Ecuatorial (0°N), anomalías positivas (contornos rojos) y negativas (contornos azules) del esfuerzo del viento zonal. La línea discontinua horizontal indica el inicio del pronóstico. Se presentan las ondas de hundimiento "cálidas" (flechas negras), y las ondas de afloramiento "frías" (flechas blancas).

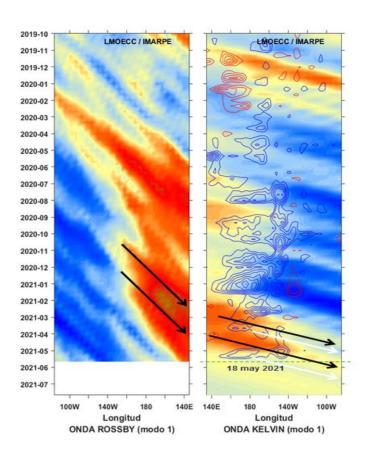
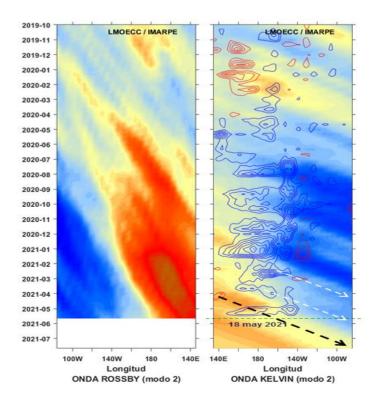



Figura 4. Diagrama Hovmöller longitudtiempo de Ondas Rossby simuladas (3°-5°S) y de Ondas Kelvin Ecuatoriales simuladas de modo baroclínico 2 (líneas punteadas), en el Pacifico Ecuatorial (0°N), anomalías positivas (contornos rojos) y negativas (contornos azules) del esfuerzo del viento zonal. La línea discontinua horizontal indica el inicio del pronóstico. Se presentan las ondas de hundimiento "cálidas" (flechas negras), y las ondas de afloramiento "frías" (flechas blancas).

Según la simulación, a inicios de abril 2021 una OKE fría (modo 2) alcanzó Sudamérica, posteriormente otra OKE cálida (modo 1) también alcanzo Sudamérica a fines de abril 2021 (Fig. 2). Por otro lado, dos ondas Kelvin fría (modo 1 y modo 2) generadas por las anomalías de vientos del este en el Pacífico ecuatorial central llegarán en mayo (modo 1) y en junio (modo 2). Asimismo, otras señales de dos ondas Kelvin cálida (modo 1 y modo 2) generadas debido a las anomalías de vientos del oeste en el Pacífico ecuatorial occidental, llegarán a Sudamérica entre mayo y junio (modo 1) y entre julio y agosto (modo 2) (Fig. 4). Recientemente, una nueva onda Kelvin fría (modo 1) se generó debido a las anomalías de vientos del este (Fig. 3) en el Pacífico ecuatorial central y llegará frente a las costas de Sudamérica en junio. Según el análisis frente a las costas del Perú, una OKE fría (modo 2) que llego inicios de abril se propagó a lo largo de la costa del litoral peruano como una OAC fría, posteriormente otra OKE cálida (modo 1) que llego a fines de abril se propagó a lo largo de la costa del litoral peruano como una OAC cálida (Fig. 2).

4. Pronóstico de efectos térmicos de ENOS sobre la costa peruana.

Con el fin de pronosticar los efectos del ENOS sobre la temperatura superficial del mar (TSM) frente a la costa peruana, representada por el índice ITCP, se utilizaron 2 modelos de simulación, basados en diferentes métodos matemáticos y estadísticos. En la Tab. 1 se comparan las características de cada modelo.

Tabla 1. Características de los modelos de pronóstico de efectos de ENOS frente a la costa peruana.

Modelo	EMPIRICO	OCEANO-ATMOSFERA	PROBABILISTICO ESPACIAL
Variable pronosticada	ITCP	ITCP	ITCP
Variables Predictoras	VAC e IAPS	Vientos NCEP	ONI
Método	Modelo empírico basado en el volumen de agua cálida ecuatorial		Modelo basado en tablas de contingencia
Relación funcional	Lineal	Lineal	Lineal
Horizonte de pronóstico	4 meses	4 meses	3 meses
Ventajas	Depende principalmente del comportamiento del volumen de agua cálida ecuatorial y de la intensidad del APS.	océano-atmósfera en el	
Desventajas	Alta variabilidad de las previsiones. Desfase funcional fijo.	Sensible a vientos del oeste.	Depende de la dinámica ecuatorial

Pronóstico del ITCP usando un modelo empírico

Se usó un modelo empírico basado en el volumen de agua cálida ecuatorial (VAC) (Matellini et al. 2007) con datos de las boyas TAO (TAO 2019) y en el Índice del Anticiclón del Pacifico Sur (IAPS) (Chamorro et al., en prep.) para realizar el pronóstico del ITCP para un horizonte de 4 meses.

La correlación entre los valores del ITCP simulados y observados fue significativa (r = 0.6, p < 0.05) para el período 1982-2011, y la mediana absoluta de los errores entre los datos simulados y observados fue de 0.41 (6.59% del rango de valores ITCP).

Los pronósticos del ITCP con el modelo empírico indican valores negativos dentro del rango de condiciones neutras entre mayo y agosto 2021 (Tab. 2, Fig. 5). En este horizonte, el valor del ITCP simulado sería mínimo en mayo 2021 (Tab. 2).

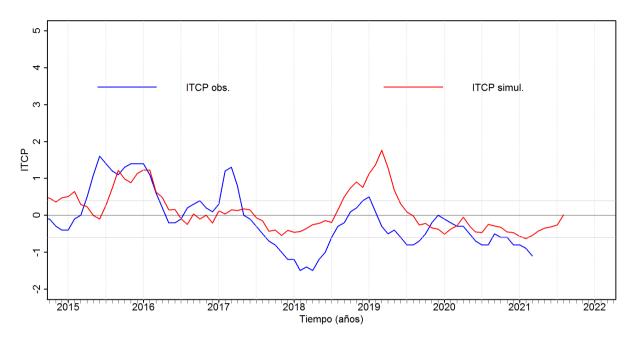


Figura 5. Pronóstico del ITCP mediante un modelo empírico, con datos actualizados hasta el mes de abril del 2021.

Tabla 2. Condición mensual de los pronósticos del ITCP mediante un modelo empírico.

Mes / Año	ITCP simulada	Condición mensual
May-21	-0.35	Neutra
Jun-21	-0.31	Neutra
Jul-21	-0.26	Neutra
Ago-21	0.01	Neutra

Pronóstico del ITCP usando un modelo acoplado océano-atmósfera de complejidad intermedia.

Se usó un modelo acoplado océano-atmosfera de complejidad intermedia del Pacifico Tropical (Dewitte et al. 2002, Gushchina et al. 2000), usando un modelo atmosférico estadístico y una relación empírica entre la AN3.4 simulada y el ITCP, para realizar el pronóstico del ITCP para un horizonte de 4 meses.

Los pronósticos del ITCP indican valores negativos dentro del rango de las condiciones frías durante mayo-junio, y condiciones neutras durante julio-agosto 2021 (Tab. 3, Fig. 6). En este horizonte, el valor del ITCP simulado seria mínimo en mayo 2021 (Tab. 3). Cabe señalar que los pronósticos están basados en la variación temporal de las condiciones del Pacifico Ecuatorial.

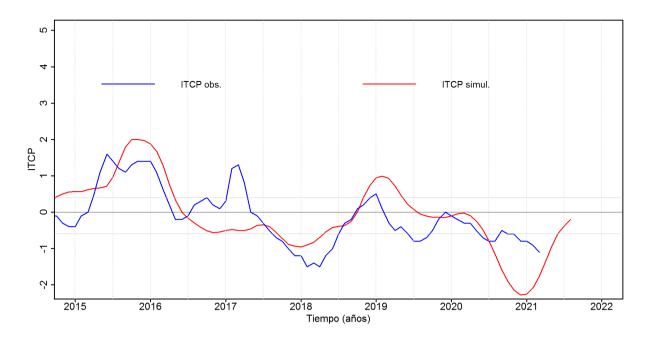


Figura 6. Pronóstico del ITCP mediante el modelo acoplado océano-atmósfera de complejidad intermedia con datos actualizados hasta el mes de abril del 2021.

Tabla 3. Condición mensual de los pronósticos del ITCP mediante el modelo océano-atmósfera acoplado.

Mes / Año	ITCP simulada	Condición mensual
May-21	-0.9	Fría
Jun-21	-0.6	Fría
Jul-21	-0.4	Neutra
Ago-21	-0.20	Neutra

Pronóstico probabilístico espacial basado en tablas de contingencia (TC).

Se realizó un pronóstico probabilístico espacial de las condiciones térmicas (fría, neutra, cálida) en el área de afloramiento peruano (hasta las 45 mn aproximadamente), usando un modelo basado en tablas de contingencia (Alfaro et al. 2003), usando como variable independiente el índice Niño 3.4 (NOAA 2020) y como dependiente las anomalías de temperatura superficial del mar en el área de afloramiento peruano (Reynolds et al. 2007). Las probabilidades de las condiciones mensuales se definieron usando quintiles de las anomalías de las temperaturas superficiales del mar.

El modelo probabilístico basado en tablas de contingencia (TC) actualizado hasta el mes de abril 2021, indicó que las condiciones más probables en la región norte y centro de la costa peruana serán neutras con 63%, mientras que en la región sur , también serán neutras con una probabilidad del 75% en promedio para el trimestre Mayo-Junio-Julio (MJJ) 2021 (Fig. 7).

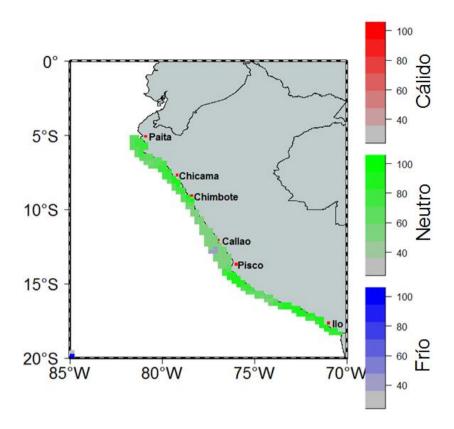


Figura 7. Pronóstico probabilístico espacial para el trimestre MJJ 2021 usando un modelo basado en tablas de contingencia.

5. Conclusiones

Respecto a los indicadores oceanográficos y atmosféricos del Pacífico Sudeste calculados con datos hasta abril 2021, se observó que en promedio durante el trimestre FMA 2021, el Índice del Anticiclón del Pacífico Sur (IAPS) presentó una condición neutra y se mantuvo desplazado al norte de su posición habitual, el Índice Térmico Costero Peruano (ITCP) presentó una condición fría, el Índice del Área de Afloramiento (IAA) presentó una condición media, y el Índice de Clorofila Superficial (ICS) presentó también una condición alta.

La simulación de la propagación de las Ondas Kelvin Ecuatoriales (OKE) indicó que en mayo se espera la llegada de una OKE fría (modo 1) a Sudamérica. Por otro lado, entre fines de mayo e inicios de junio se espera la llegada de una OKE fría (modo 2) y de una OKE cálida (modo 1). En junio, se espera la llegada de una OKE fría (modo 1), y en julio la llegada de otra OKE cálida (modo 2). El análisis de Ondas Atrapadas a la Costa (OAC) identificó la propagación de una OAC fría frente a la costa del litoral peruano a inicios de abril 2021, y otra OAC cálida a fines de abril 2021.

El pronóstico del Índice Térmico Costero Peruano (ITCP) usando el modelo acoplado océano-atmosfera de complejidad intermedia, basado en forzantes del Pacífico Ecuatorial, pronostican condiciones frías del ITCP durante mayo-junio 2021, y condiciones neutras durante julio-agosto; por otro lado, el modelo empírico, basado en el volumen de agua cálida ecuatorial y el anticiclón del Pacífico Sur pronostican condiciones neutras entre mayo y agosto 2021.

El presente informe se elabora con fines de investigación, por lo que es de carácter referencial, sin garantías sobre su uso posterior. El Comunicado Oficial de la Comisión multisectorial encargada del Estudio Nacional del Fenómeno El Niño (ENFEN) puede encontrarse en el siguiente enlace: https://bit.ly/3wQalTp.

6. Referencias bibliográficas

- Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. (2004). Predictability of El Niño over the past 148 years. Nature, 428: 733–736.
- Demarcq, H. and A. Benazzouz (2015), Trends in phytoplankton and primary productivity off Northwest Africa. In: Oceanographic and biological features in the Canary Current Large Marine Ecosystem. Valdés, L. and Déniz-González, *I. (eds). IOC-UNESCO, Paris. IOC Technical Series*, No. 115, pp. 331-341.
- Dewitte B., D. Gushchina, Y. duPenhoat and S. Lakeev, 2002: On the importance of subsurface variability for ENSO simulation and prediction with intermediate coupled models of the Tropical Pacific: A case study for the 1997-1998 El Niño. *Geoph. Res. Lett.*, vol. 29, no. 14, 1666, 10.1029/2001GL014452.
- Gushchina D. Yu, B. Dewitte and M. A. Petrossiants, 2000: A coupled ocean-atmosphere model of tropical Pacific: The forecast of the 1997-1998 El Niño Southern Oscillation. *Izvestiya atmospheric and oceanic physics*. 36(5): 533-554.
- Illig, S., B. Dewitte, N. Ayoub, Y. du Penhoat, G. Reverdin, P. De Mey, F. Bonjean and G.S.E. Lagerloef. 2004. Interannual long equatorial waves in the Tropical Atlantic from a high resolution OGCM experiment in 1981–2000, *J. Geophys. Res.* 109 (C2): C02022.
- Kalnay et al. 1996. The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437-470.
- NOAA. 2003. NOAA gets U.S. consensus for El Niño/La Niña index, definitions. On-line: http://www.noaanews.noaa.gov/stories/s2095.htm.
- NOAA. 2004. NOAA's new global climate forecast system increases confidence that weak El Niño conditions are developing. On-line: http://www.noaanews.noaa.gov/stories2004/s2302.htm.
- Quispe C, Tam J, Chamorro A. 2014. Modelado y Pronóstico de ondas Kelvin ecuatoriales. p.97. *En: UPCH (Ed.). Libro de resúmenes del IV Congreso de Ciencias del Mar (IV CONCIMAR)*. 366 p
- Quispe-Ccalluari, C., J. Tam, H. Demarcq, A. Chamorro, D. Espinoza-Morriberón, C. Romero, N. Dominguez, J. Ramos y R. Oliveros-Ramos. 2018: An index of coastal thermal effects of El Niño Southern Oscillation on the Peruvian Upwelling Ecosystem. *Int. J. Climatol.*:1-11. https://doi.org/10.1002/joc.5493.
- Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. *J. Climate*, 20, 5473-5496.
- Romero C, Chamorro A, Espinoza-Morriberon D, Tam J. 2014. Variación estacional e interanual de Indicadores de afloramiento frente a la costa central del Perú. p.191. *En: UPCH (Ed.). Libro de resúmenes del IV Congreso de Ciencias del Mar (IV CONCIMAR)*. 366 p.
- TAO (Tropical Atmosphere Ocean Project). 2018. Data Display. NOAA. Pacific Marine Environmental Laboratory. En línea: www.pmel.noaa.gov/tao/jsdisplay.
- Webster, P. J. & Yang, S, (1992). Monsoon and ENSO: Selectively Interactive Systems. Quart. J. Roy. Meteor. Soc., 118(507): 877-926