INFORME SOBRE EL PRONÓSTICO DE EFECTOS DE ENOS SOBRE LAS CONDICIONES OCEANOGRAFICAS FRENTE A LA COSTA PERUANA EN BASE A FORZANTES DEL PACIFICO ECUATORIAL Y SUDESTE

Setiembre 2023

Carlos Quispe, Jorge Tam, Cinthia Arellano, Adolfo Chamorro, Dante Espinoza, Carlos Yván Romero y Jorge Ramos

LABORATORIO DE MODELADO OCEANOGRAFICO, ECOSISTEMICO Y DEL CAMBIO CLIMATICO (LMOECC)

1. Resumen

Usando datos hasta setiembre 2023, se calcularon medias móviles centradas en agosto (trimestre JAS) de los indicadores de impactos de ENOS: el Índice del Anticiclón del Pacífico Sur (IAPS) se mantuvo en condición débil y alrededor de su posición habitual, el Índice Térmico Costero Peruano (ITCP) mantuvo una condición cálida, el Índice del Área de Afloramiento (IAA) mantuvo una condición baja y el Índice de Clorofila Superficial tuvo una condición media.

Según el modelo oceánico se pronostica que una Onda Kelvin Ecuatorial (OKE) cálida (modo 2) debilitada llegará a Sudamérica en octubre. Se espera la llegada de otra OKE cálida (modo 1) a Sudamérica entre octubre y noviembre, una OKE fría (modo 1) en diciembre, y otra OKE cálida (modo 2) entre diciembre 2023 y enero 2024. Es necesario indicar que la intensidad del arribo de las OKEs estará en función de la condición del viento en la región oriental del Pacífico ecuatorial. El análisis de Ondas Atrapadas a la Costa (OAC) identificó la propagación de una OAC cálida frente a la costa del litoral peruano asociada al arribo de una OKE cálida (modo 1).

Se usaron 2 modelos de pronóstico de efectos térmicos de El Niño y la Oscilación del Sur (ENOS) frente a la costa peruana y la variable pronosticada fue el Índice Térmico Costero Peruano (ITCP): el modelo empírico basado en el volumen de agua cálida ecuatorial y el Anticiclón del Pacifico Sur, pronostica que las actuales condiciones cálidas del ITCP continuarán entre octubre 2023 y enero 2024. Asimismo, el modelo acoplado océano-atmósfera de complejidad intermedia, basado en forzantes del Pacifico Ecuatorial Tropical, también pronostica condiciones cálidas del ITCP entre octubre 2023 y enero 2024.

2. Indicadores oceanográficos y atmosféricos del Pacífico Sudeste.

Índice del APS (IAPS)

Se usó el Índice del APS (IAPS) para caracterizar la intensidad del Anticiclón del Pacífico Sur (APS), el cual se calculó mediante la media móvil trimestral de la anomalía de la presión atmosférica (hPa) mensual máxima en el núcleo del APS con datos de la base de datos Reanálisis NCEP/NOAA (Kalnay et al. 1996). El IAPS fue clasificado en 3 condiciones: débil, neutro e intenso (Fig. 1a). Durante el trimestre JAS 2023 el IAPS (-1.6) se mantuvo en una condición débil.

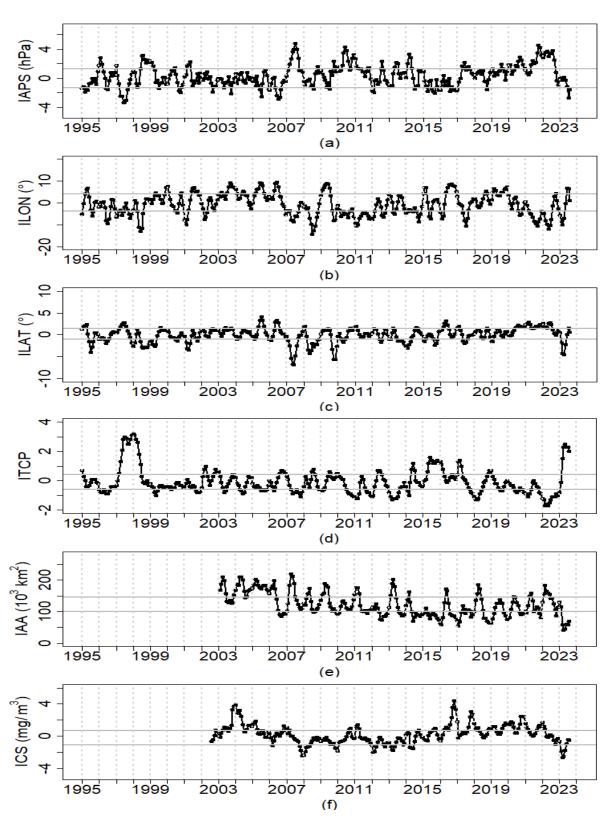


Figura 1. Variación interanual con datos actualizados hasta el mes de setiembre del 2023 de: (a) Índice del APS (IAPS), (b) Índice de desplazamiento longitudinal del APS (ILON), (c) Índice de desplazamiento latitudinal del APS (ILAT), (d) Índice Térmico Costero Peruano (ITCP), (e) Índice del área de afloramiento (IAA) y (f) Índice de Clorofila a Superficial (ICS).

Índices de la posición del APS (ILON e ILAT)

Se usaron los índices de posición longitudinal (ILON) y latitudinal (ILAT) del APS para caracterizar la posición del núcleo del APS, los cuales se calcularon mediante la media móvil trimestral de las anomalías de la posición longitudinal y latitudinal de la presión atmosférica mensual máxima en el núcleo del APS con datos del Reanálisis NCEP/NOAA (Kalnay et al. 1996). Valores positivos (negativos) de los índices ILON (°) e ILAT (°) representan un desplazamiento al este y al norte (al oeste y al sur) del núcleo del APS, respectivamente. Durante el trimestre JAS 2023 los índices ILON e ILAT presentaron valores de +1 y +0.5 respectivamente, indicando que el núcleo del APS, en promedio, estuvo desplazado alrededor de su posición habitual (Fig. 1c y 1b).

Índice Térmico Costero Peruano (ITCP)

Se usó el Índice Térmico Costero Peruano (ITCP) (Quispe-CCalluari, et al. 2018) para caracterizar la variabilidad interanual oceánica frente a la costa peruana, el cual se calculó mediante la media móvil trimestral de la primera componente principal de las Anomalías de Temperatura Superficial del Mar (ATSM) de las aguas costeras a partir de la base de datos de Reynolds (2007), que explicó el 87.7 % de la varianza. El ITCP fue clasificado en 3 condiciones: frío, neutro y cálido (Fig.1d). El ITCP tiene que persistir al menos 3 trimestres consecutivos por arriba (abajo) del umbral para ser categorizado como un Periodo Cálido (Frío).

Durante el trimestre JAS 2023, el valor del ITCP (+2) se mantuvo en una condición cálida. En los últimos 6 trimestres consecutivos (FMA, MAM, AMJ, MJJ, JJA y JAS 2023) se mantuvo con valores positivos por encima del umbral, lo cual indica la ocurrencia de un Periodo Cálido en el Ecosistema de Afloramiento Peruano. Por otro lado, el valor del Índice Oceánico de El Niño (ONI) fue +1.3°C en el trimestre JAS 2023, por cuarto trimestre consecutivo, según criterio de la NOAA indica una condición El Niño (Becker 2023), la cual podría anteceder a un episodio El Niño.

Índice del área de afloramiento (IAA)

Se calculó el Índice del Área de Afloramiento (IAA) para caracterizar el área costera limitada por el frente térmico (en 10³ km²) entre los 05°S y 14°S en la franja de 300 km frente al litoral, y puede ser empleado como un indicador del avance o repliegue de las aguas del afloramiento costero. Este indicador ha sido desarrollado en base al frente térmico (Romero et al. 2014) construido a partir de datos de TSM satelital de nivel 4 (Multiscale UltraHigh Resolution MUR, JPL-NASA) a 1 km de resolución. El IAA fue clasificado en 3 condiciones: baja, media y alta. Durante el trimestre JAS 2023, el IAA presentó un valor asociado a la condición baja (69 km²) lo que indicaría que la cobertura espacial de las aguas de afloramiento costero se mantiene bajo desde marzo 2023 (Fig. 1e).

Índice de Clorofila a Superficial (ICS)

Para el análisis de la clorofila-a superficial se utilizó información proveniente del satélite SeaWIFS (1997-2010) y del satélite MODIS corregido siguiendo la metodología de Demarcq y Benazzouz (2015) con una resolución espacial de 4 km dentro de los 100 km a la costa y los 4°S - 16°S. Se construyó una climatología tomando en cuenta información del 1998 al 2015 y se obtuvieron las anomalías promedio de la clorofila-a superficial (mg.m⁻³). El ICS se calculó como la media móvil trimestral de las anomalías promedio de la concentración de clorofila-a superficial (mg.m⁻³) mensualmente (Espinoza et al. en prep.). El ICS fue clasificado en 3 condiciones: baja, media y alta. Durante el trimestre JAS 2023, el ICS tuvo una condición media (-0.53) (Fig. 1f).

3. Pronóstico de ondas Kelvin ecuatoriales y propagación de Ondas Atrapadas a la Costa

Con el fin de pronosticar la propagación de las Ondas Kelvin Ecuatoriales (OKE) hacia el Pacífico Oriental Ecuatorial y las Ondas Rossby (OR) hacia el Pacífico Occidental Ecuatorial, se simularon las ondas Kelvin y ondas Rossby en el Pacífico Tropical, siguiendo la metodología de Illig et al. (2004), Dewitte et al. (2002) y Quispe-Ccalluari et al (2021), usando como forzante vientos NCEP actualizados hasta el 10 de octubre 2023 (Kalnay et al. 1996). El pronóstico de las OKE hasta el 10 de diciembre 2023 se realizó con anomalías del esfuerzo del viento igual cero, y para el cálculo de las anomalías se usó el periodo 1991-2020. La correlación entre los valores de nivel del mar observado y pronosticado en el Pacífico Sudeste fue significativa (r = 0.69, p < 0.05) para el periodo 1993-2008 (Quispe et al. 2014). Se graficó la contribución de los modos baroclínicos 1 (flechas contínuas) (Fig. 3) y modo 2 (flechas discontínuas) (Fig. 4) de las OR en 3°-5°S y OKE a las anomalías del nivel del mar (cm) en el Pacifico Ecuatorial y la contribución conjunta de los modos baroclínicos 1+2 de las OKE (Fig. 2). Los valores positivos corresponden a OKEs de hundimiento "cálidas" (flechas negras), y los valores negativos corresponden a OKEs de afloramiento "frías" (flechas blancas). Con el fin de mostrar al paso de Ondas Atrapadas a la Costa (OAC) de hundimiento "cálidas" (flechas negras) y afloramiento "frías" (flechas blancas) frente a la costa peruana asociadas a la llegada de las OKEs, se empleó las anomalías del nivel del mar satelital, filtradas frente a la costa peruana, obtenidas de la base de datos de Copernicus Marine Environment Monitoring Service (CMEMS).

Figura 2. Diagrama Hovmöller longitud-tiempo (izq.) de Ondas **Ecuatoriales** Kelvin simuladas (contribución conjunta de los modos baroclínicos 1+2 a las anomalías del nivel del mar en cm) en el Ecuatorial (0°N). Pacifico presentan las OKEs de hundimiento "cálidas" (flechas negras), las OKEs afloramiento "frías" (flechas blancas), el inicio del pronóstico (línea horizontal discontinua). Diagrama Hovmöller (der.) Ondas Atrapadas a la Costa observadas (Perú) en cm con el paso de OACs de hundimiento "cálidas" (flechas negras) y OACs de afloramiento "frías" blancas). La longitud de ambos diagramas no están a la misma escala.

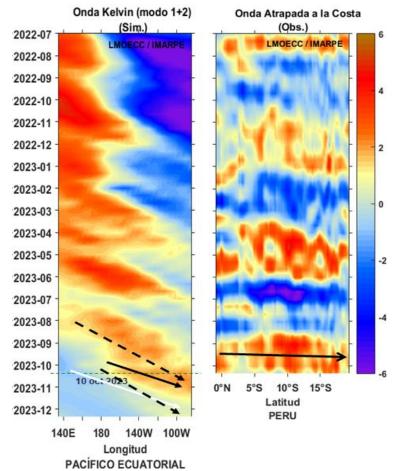


Figura 3. Diagrama Hovmöller longitud-tiempo de Ondas Rossby simuladas (3°-5°S) y de Ondas Kelvin Ecuatoriales simuladas de modo baroclínico 1 (líneas continuas) en el Pacifico Ecuatorial (0°N), anomalías positivas (contornos rojos) negativas (contornos azules) del esfuerzo del viento zonal. La línea discontinua horizontal indica el inicio del pronóstico. Se presentan las ondas de hundimiento "cálidas" (flechas negras), y las ondas de afloramiento "frías" (flechas blancas).

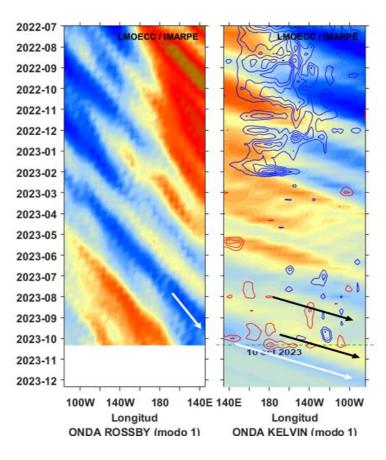
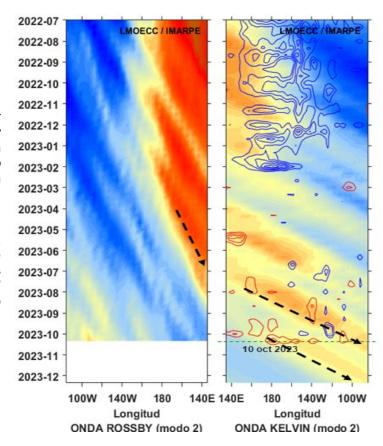



Figura 4. Diagrama Hovmöller longitud-tiempo de Ondas Rossby simuladas (3°-5°S) y de Ondas Kelvin Ecuatoriales simuladas de modo baroclínico 2 (líneas punteadas), en Pacifico Ecuatorial (0°N), anomalías positivas (contornos rojos) y negativas (contornos azules) del esfuerzo del viento zonal. La línea discontinua horizontal indica el inicio del pronóstico. Se presentan las ondas de hundimiento "cálidas" (flechas negras), y las ondas de afloramiento "frías" (flechas blancas).

Según la simulación, una OKE cálida (modo 1) arribó a Sudamérica en setiembre (Fig. 3), y según el análisis frente a la costa de Perú, esta OKE cálida se propagó a lo largo de la costa del litoral peruano como una OAC cálida (Fig. 2).

Por otro lado, una OKE cálida (modo 2), generada por la contribución conjunta entre la reflexión de una onda Rossby cálida y pulsos de vientos del oeste durante el mes de julio en el Pacifico ecuatorial occidental, llegará a Sudamérica en octubre (Fig. 4). Asimismo, otra OKE cálida (modo 1), generada en setiembre debido al debilitamiento de los vientos alisios en el Pacífico ecuatorial occidental y central, llegará a Sudamérica entre octubre y noviembre (Fig. 3). Este mismo debilitamiento de los vientos alisios en el Pacífico ecuatorial occidental y central generó otra OKE cálida (modo 2), que llegará a Sudamérica entre diciembre 2023 y enero 2024 (Fig. 4). Por otro lado, una OKE fría (modo 1), se generó como reflexión de una onda Rossby fría durante el mes de setiembre en el Pacífico ecuatorial occidental, y llegará a Sudamérica en diciembre (Fig. 3).

4. Pronóstico de efectos térmicos de ENOS sobre la costa peruana.

Con el fin de pronosticar los efectos del ENOS sobre la temperatura superficial del mar (TSM) frente a la costa peruana, representada por el índice ITCP, se utilizaron 2 modelos de simulación, basados en diferentes métodos matemáticos y estadísticos. En la Tab. 1 se comparan las características de cada modelo.

Tabla 1. Características de	los modelos de i	pronóstico de efect	tos de ENOS frent	e a la costa peruana.

Modelo	EMPIRICO	OCEANO-ATMOSFERA	PROBABILISTICO ESPACIAL
Variable pronosticada	ITCP	ITCP	ITCP
Variables Predictoras	VAC e IAPS	Vientos NCEP	ONI
Método	Modelo empírico basado en el volumen de agua cálida ecuatorial	Modelo acoplado océano- atmósfera de complejidad intermedia	Modelo basado en tablas de contingencia
Relación funcional	Lineal	Lineal	Lineal
Horizonte de pronóstico	4 meses	4 meses	3 meses
Ventajas	Depende principalmente del comportamiento del volumen de agua cálida ecuatorial y de la intensidad del APS.	Depende de la interacción océano-atmósfera en el Pacífico Tropical.	Estima probabilidades espaciales
Desventajas	Alta variabilidad de las previsiones. Desfase funcional fijo.	Sensible a vientos del oeste.	Depende de la dinámica ecuatorial

Pronóstico del ITCP usando un modelo empírico

Se usó un modelo empírico basado en el volumen de agua cálida ecuatorial (VAC) (Matellini et al. 2007) con datos de las boyas TAO (TAO 2021) y en el Índice del Anticiclón del Pacifico Sur (IAPS) (Chamorro et al., en prep.) para realizar el pronóstico del ITCP para un horizonte de 4 meses.

La correlación entre los valores del ITCP simulados y observados fue significativa (r = 0.6, p < 0.05) para el período 1982-2011, y la mediana absoluta de los errores entre los datos simulados y observados fue de 0.41 (6.59% del rango de valores ITCP).

Los pronósticos del ITCP con el modelo empírico indican que las actuales condiciones cálidas del ITCP continuarán entre octubre 2023 y enero 2024 (Tab. 2, Fig. 5). En este horizonte, el valor del ITCP simulado sería máximo en diciembre 2023 (Tab. 2).

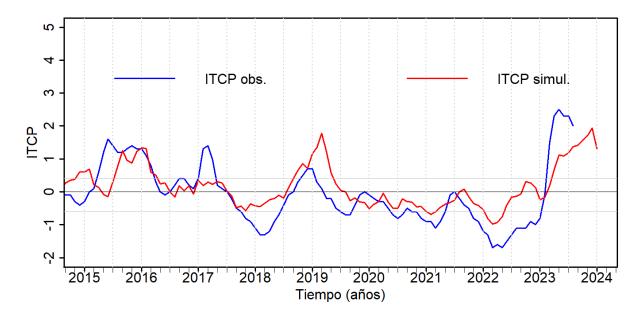


Figura 5. Pronóstico del ITCP mediante un modelo empírico, con datos actualizados hasta el mes de setiembre del 2023.

Tabla 2. Condición mensual de los pronósticos del ITCP mediante un modelo empírico.

Mes / Año	ITCP simulada	Condición mensual
Oct-23	+1.58	Cálida
Nov-23	+1.71	Cálida
Dic-23	+1.94	Cálida
Ene-24	+1.30	Cálida

Pronóstico del ITCP usando un modelo acoplado océano-atmósfera de complejidad intermedia.

Se usó un modelo acoplado océano-atmosfera de complejidad intermedia del Pacifico Tropical (Dewitte et al. 2002, Gushchina et al. 2000), usando un modelo atmosférico estadístico y una relación empírica entre la AN3.4 simulada y el ITCP, para realizar el pronóstico del ITCP para un horizonte de 4 meses.

Los pronósticos del ITCP, basados en la variación temporal de las condiciones del Pacifico Ecuatorial, indican que las actuales condiciones cálidas persistirán entre octubre 2023 y enero 2024 (Tab. 3, Fig. 6). En este horizonte, el valor del ITCP simulado seria máximo entre noviembre 2023 y enero 2024 (Tab. 3).

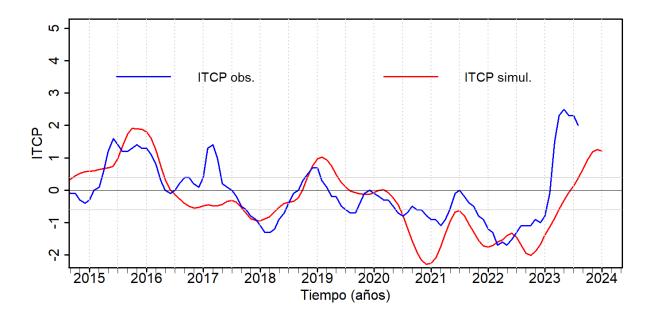


Figura 6. Pronóstico del ITCP mediante el modelo acoplado océano-atmósfera de complejidad intermedia con datos actualizados hasta el mes de setiembre del 2023.

Tabla 3. Condición mensual de los pronósticos del ITCP mediante el modelo océano-atmósfera acoplado.

Mes / Año	ITCP simulada	Condición mensual
Oct-23	+1.0	Cálida
Nov-23	+1.2	Cálida
Dic-23	+1.2	Cálida
Ene-24	+1.2	Cálida

Pronóstico probabilístico espacial basado en tablas de contingencia (TC).

Se realizó un pronóstico probabilístico espacial de las condiciones térmicas (fría, neutra, cálida) en el área de afloramiento peruano (hasta las 45 mn aproximadamente), usando un modelo basado en tablas de contingencia (Alfaro et al. 2003), usando como variable independiente el índice Niño 3.4 (NOAA 2020) y como dependiente las anomalías de temperatura superficial del mar en el área de afloramiento peruano (Reynolds et al. 2007). Las probabilidades de las condiciones mensuales se definieron usando quintiles de las anomalías de las temperaturas superficiales del mar.

El modelo probabilístico basado en tablas de contingencia (TC) y bajo la condición de la región Niño 3.4, se actualizó hasta el mes de setiembre 2023, e indicó que la condición cálida en el área costa norte-centro tiene una probabilidad del 73%, mientras que, en el área costa sur, la condición neutra tendrá una probabilidad del 50% en promedio para el trimestre Octubre-Noviembre-Diciembre (OND) 2023 (Fig. 7).

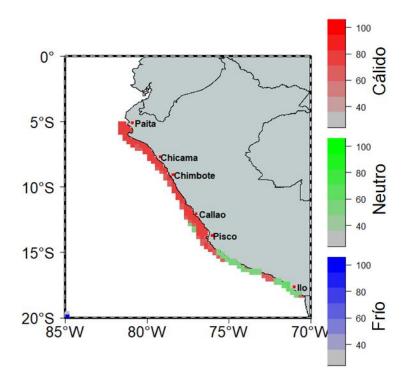


Figura 7. Pronóstico probabilístico espacial para el trimestre OND 2023 usando un modelo basado en tablas de contingencia.

5. Conclusiones

Respecto a los indicadores oceanográficos y atmosféricos del Pacífico Sudeste calculados con datos hasta setiembre 2023, se observó que en promedio durante el trimestre JAS 2023, el Índice del Anticiclón del Pacífico Sur (IAPS) mantuvo una condición débil y estuvo alrededor de su posición habitual, el Índice Térmico Costero Peruano (ITCP) mantuvo una condición cálida, el Índice del Área de Afloramiento (IAA) mantuvo una condición baja, y el Índice de Clorofila Superficial (ICS), tuvo una condición media.

El análisis frente a las costas del Perú hasta inicios de octubre 2023, identificó la propagación de una onda OAC cálida, en setiembre, debido a la llegada de una OKE cálida (modo 1). Por otro lado, en perspectivas, según la simulación de la propagación de las OKE, se espera la llegada de una OKE cálida (modo 2) debilitada a Sudamérica en octubre. Posteriormente, se esperaría la llegada de otra OKE cálida (modo 1) entre octubre y noviembre. Se espera la llegada de una OKE fría (modo 1) en diciembre, y la llegada de otra OKE cálida (modo 2) entre diciembre 2023 y enero 2024.

El pronóstico del Índice Térmico Costero Peruano (ITCP) usando el modelo empírico, basado en el volumen de agua cálida ecuatorial y el anticiclón del Pacífico Sur pronostica que las actuales condiciones cálidas continuarán entre octubre 2023 y enero 2024, asimismo, el modelo acoplado océano-atmosfera de complejidad intermedia, basado en forzantes del Pacífico Ecuatorial, también pronostica condiciones cálidas del ITCP entre octubre 2023 y enero 2024.

El presente informe se elabora con fines de investigación, por lo que es de carácter referencial, sin garantías sobre su uso posterior. El Comunicado Oficial de la Comisión multisectorial encargada del Estudio Nacional del Fenómeno El Niño (ENFEN) puede encontrarse en el siguiente enlace: https://shorturl.at/qNTV1

6. Referencias bibliográficas

- Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. (2004). Predictability of El Niño over the past 148 years. Nature, 428: 733–736.
- Demarcq, H. and A. Benazzouz (2015), Trends in phytoplankton and primary productivity off Northwest Africa. In: Oceanographic and biological features in the Canary Current Large Marine Ecosystem. Valdés, L. and Déniz-González, *I. (eds). IOC-UNESCO, Paris. IOC Technical Series*, No. 115, pp. 331-341.
- Dewitte B., D. Gushchina, Y. duPenhoat and S. Lakeev, 2002: On the importance of subsurface variability for ENSO simulation and prediction with intermediate coupled models of the Tropical Pacific: A case study for the 1997-1998 El Niño. *Geoph. Res. Lett.*, vol. 29, no. 14, 1666, 10.1029/2001GL014452.
- Gushchina D. Yu, B. Dewitte and M. A. Petrossiants, 2000: A coupled ocean-atmosphere model of tropical Pacific: The forecast of the 1997-1998 El Niño Southern Oscillation. *Izvestiya atmospheric and oceanic physics*. 36(5): 533-554.
- Illig, S., B. Dewitte, N. Ayoub, Y. du Penhoat, G. Reverdin, P. De Mey, F. Bonjean and G.S.E. Lagerloef. 2004. Interannual long equatorial waves in the Tropical Atlantic from a high resolution OGCM experiment in 1981–2000, *J. Geophys. Res.* 109 (C2): C02022.
- Kalnay et al. 1996. The NCEP/NCAR 40-year reanalysis project, *Bull. Amer. Meteor. Soc.*, 77, 437-470
- NOAA. 2003. NOAA gets U.S. consensus for El Niño/La Niña index, definitions. On-line: http://www.noaanews.noaa.gov/stories/s2095.htm.
- NOAA. 2004. NOAA's new global climate forecast system increases confidence that weak El Niño conditions are developing. On-line: http://www.noaanews.noaa.gov/stories2004/s2302.htm.
- Quispe C, Tam J, Chamorro A. 2014. Modelado y Pronóstico de ondas Kelvin ecuatoriales. p.97. *En: UPCH (Ed.). Libro de resúmenes del IV Congreso de Ciencias del Mar (IV CONCIMAR)*. 366 p
- Quispe-Ccalluari, C., A. Chamorro, C. Arellano, y J. Tam. 2021. Propagación de ondas de Kelvin ecuatoriales y ondas atrapadas a la costa durante El Niño 2015-16 y El Niño costero 2017 frente a Perú: Simulaciones y Observaciones. Boletín Instituto del Mar del Perú, 36(2), 349–361. https://doi.org/10.53554/boletin.v36i2.342
- Quispe-Ccalluari, C., J. Tam, H. Demarcq, A. Chamorro, D. Espinoza-Morriberón, C. Romero, N. Dominguez, J. Ramos y R. Oliveros-Ramos. 2018: An index of coastal thermal effects of El Niño Southern Oscillation on the Peruvian Upwelling Ecosystem. *Int. J. Climatol.*:1-11. https://doi.org/10.1002/joc.5493.
- Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. *J. Climate*, 20, 5473-5496.
- Romero C, Chamorro A, Espinoza-Morriberon D, Tam J. 2014. Variación estacional e interanual de Indicadores de afloramiento frente a la costa central del Perú. p.191. *En: UPCH (Ed.). Libro de resúmenes del IV Congreso de Ciencias del Mar (IV CONCIMAR).* 366 p.
- TAO (Tropical Atmosphere Ocean Project). 2018. Data Display. NOAA. Pacific Marine Environmental Laboratory. En línea: www.pmel.noaa.gov/tao/jsdisplay.
- Webster, P. J. & Yang, S, (1992). Monsoon and ENSO: Selectively Interactive Systems. Quart. J. Roy. Meteor. Soc., 118(507): 877-926

Ing. Luis Pizarro Pereyra Coordinador del Área Funcional de Investigaciones en Oceanografía Física